A major component in controlling V(D)J recombination is differential accessibility through localized changes in chromatin structure. Attachment of DNA to the nuclear matrix via matrix attachment region (MAR) sequences, and interaction with MAR-binding proteins have been shown to alter chromatin conformation, promote histone acetylation, and influence gene transcription. In this study, the flanking regions of several human and mouse Ig V(H) and Ig Vkappa genes were analyzed extensively for the presence of MARs by in vitro matrix-binding assay, and for interaction with the MAR-binding proteins cut-like protein x/CCAAT-displacement protein (Cux/CDP), B cell regulator of IgH transcription (Bright), and special AT-rich sequence-binding protein (SATB1) by EMSA. Cux/CDP and SATB1 are associated with repression, while Bright is an activator of Ig transcription. Binding sites were identified in the vicinity of all analyzed Ig V genes, and were also found flanking TCR Vbeta genes. We also show that the binding sites of the different factors do not always occur at MAR sequences. MAR sequences were also found within the Ig V loci at a much higher frequency than throughout the rest of the genome. Overall, the frequency and location of binding sites relative to the coding regions, and the strength of DNA-protein interaction showed much heterogeneity. Thus, variations in factor binding and MAR activity could potentially influence the extent of localized accessibility to V(D)J recombination and thus could play a role in unequal rearrangement of individual V genes. These sites could also contribute to effective transcription of Ig genes in mature and/or activated B cells, bringing both the promoter as well as the enhancer regions into close proximity at the nuclear matrix.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.169.5.2477DOI Listing

Publication Analysis

Top Keywords

binding sites
16
mar sequences
12
matrix attachment
8
cut-like protein
8
protein x/ccaat-displacement
8
x/ccaat-displacement protein
8
cell regulator
8
regulator igh
8
igh transcription
8
transcription binding
8

Similar Publications

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Anti-correlation of LacI association and dissociation rates observed in living cells.

Nat Commun

January 2025

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!