Structural genomics is emerging as a principal approach to define protein structure-function relationships. To apply this approach on a genomic scale, novel methods and technologies must be developed to determine large numbers of structures. We describe the design and implementation of a high-throughput structural genomics pipeline and its application to the proteome of the thermophilic bacterium Thermotoga maritima. By using this pipeline, we successfully cloned and attempted expression of 1,376 of the predicted 1,877 genes (73%) and have identified crystallization conditions for 432 proteins, comprising 23% of the T. maritima proteome. Representative structures from TM0423 glycerol dehydrogenase and TM0449 thymidylate synthase-complementing protein are presented as examples of final outputs from the pipeline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129326PMC
http://dx.doi.org/10.1073/pnas.142413399DOI Listing

Publication Analysis

Top Keywords

structural genomics
12
thermotoga maritima
8
maritima proteome
8
genomics thermotoga
4
proteome implemented
4
implemented high-throughput
4
high-throughput structure
4
structure determination
4
pipeline
4
determination pipeline
4

Similar Publications

We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.

View Article and Find Full Text PDF

Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Family Genetic Risk Communication and Reverse Cascade Testing in the BabySeq Project.

Genet Med

December 2024

Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.

Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.

Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!