Contribution of endothelin-1 to renal activator protein-1 activation and macrophage infiltration in aldosterone-induced hypertension.

Clin Sci (Lond)

Department of Pharmacology, Instituto de Ciencias Biomedicas, Univeridade de Sao Paulo, Av Lineu Prestes 1524, Sao Paulo 05508-900, Brazil.

Published: August 2002

Aldosterone-induced hypertension is associated with renal damage that may be mediated by endothelin-1 (ET-1). We evaluated whether inflammatory cell infiltration and DNA-binding activity of the transcription factors nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) were increased in kidneys from aldosterone-infused rats. The role of ET-1 in these processes was evaluated by treating rats with the ET(A)-receptor blocker, BMS 182874. Rats were infused with aldosterone (0.75 microg/h) via a mini-osmotic pump and were given 1% NaCl in the drinking water in the absence and presence of BMS 182874 or of the aldosterone receptor blocker, spironolactone. Renal sections were used to assess inflammatory cell infiltration, which was identified immunocytochemically using monoclonal antibodies against macrophages (ED1+). Electrophoretic mobility shift assays evaluated the DNA-binding activity of NF-kappa B and AP-1 in renal tissue. Systolic blood pressure (BP) was increased in the aldosterone-infused group compared with controls (123+/-6 versus 110+/-10 mmHg, P<0.05). BMS 182874 and spironolactone significantly decreased BP (P<0.05). Macrophage infiltration was increased in the kidneys of aldosterone-infused rats compared with controls. Renal binding activity (arbitrary units) of AP-1, in contrast with that of NF-kappa B, increased in aldosterone-infused rats compared with control rats (AP-1, 4.2+/-0.3 versus 1.0+/-0.1, P<0.05; NF-kappa B, 1.6+/-0.5 versus 1.2+/-0.5). BMS 182874 and spironolactone decreased macrophage infiltration (by 70% and 50% respectively) and AP-1 binding activity (1.0+/-0.3 and 0.8+/-0.3 respectively). In conclusion, kidneys from aldosterone-infused rats exhibited macrophage infiltration and increased AP-1 DNA-binding activity. These processes were attenuated by BMS 182874. Our findings suggest that renal damage in aldosterone-dependent hypertension is associated with inflammatory processes that are mediated in part via ET-1.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS103S025SDOI Listing

Publication Analysis

Top Keywords

activator protein-1
8
aldosterone-induced hypertension
8
inflammatory cell
8
cell infiltration
8
dna-binding activity
8
bms 182874
8
contribution endothelin-1
4
renal
4
endothelin-1 renal
4
renal activator
4

Similar Publications

The ethanolic extract of Rhaphidophora peepla prevents inflammation by inhibiting the activation of Syk/AKT/NF-κB and TAK1/MAPK/AP-1.

Phytomedicine

January 2025

Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.

View Article and Find Full Text PDF

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Unlabelled: Lipopolysaccharide (LPS), a gut-derived endotoxin, is a recognized risk factor for both Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Rocaglamide-A (Roc-A), a natural compound derived from the genus Aglaia, is known for its pharmacological and immunosuppressive effects on various cell types. Although our recent investigations have unveiled Roc-A's anti-adipogenic role in adipocytes, its mechanism in hepatic inflammation remains elusive.

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Gasoline exhaust particles induce MMP1 expression via Nox4-derived ROS-ATF3-linked pathway in human umbilical vein endothelial cells.

Toxicology

January 2025

Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.

Gasoline exhaust particles (GEP) are risk factors for cardiovascular disease. Activating transcription factor 3 (ATF3) is a transcription factor known to form a heterodimer with AP-1 transcription factors for its target gene expression. However, the involvement of ATF3 in GEP-induced gene expression in human umbilical vein endothelial cells (HUVECs) has not been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!