Structural analysis of human CCR2b and primate CCR2b by molecular modeling and molecular dynamics simulation.

J Mol Model

Cellular and Molecular Evolutionary Key Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China.

Published: July 2002

CCR2b, a chemokine receptor for MCP-1, -2, -3, -4, plays an important role in a variety of diseases involving infection, inflammation, and/or injury, as well as being a coreceptor for HIV-1 infection. Two models of human CCR2b (hCCR2b) were generated by homology modeling and 1 ns restrained molecular dynamics (MD) simulation. In one only C113-C190 forms a disulfide bond (SS model); in another the potential C32-C277 disulfide bond was formed (2SS model). Analysis of the structures and averaged displacements of Calpha atoms of the N-terminal residues shows that the main differences between the SS and 2SS models lie in a region D25YDYGAPCHKFD36; in the extracellular part of the 2SS model the accessible surfaces of N12, F23, Y26, Y28 and F35 are obviously raised and a more stable H-bond net is formed. The potential energy of the 2SS-water assembly finally fluctuated around -43,020 kJ x mol(-1), which is about 302 kJ x mol(-1) lower than that of the SS-water assembly. All these results suggest that the 2SS model is more favorable. The CCR2b genes of 17 primates were sequenced and four CCR2b models for primates Ateles paniscus (A. pan), Hylobates leucogyneus(H. leu), Papio cynocephalus (P. cyn) and Trachypithecus francoist ( T. fra) were generated based on the 2SS model. A comparison of hCCR2b with primate CCR2b also supports the importance of the region D25YDYGAPCHKFD36. Electrostatic potential maps of human and primate CCR2b all display the dipolar characteristics of CCR2b with the negative pole located in the extracellular part and a strong positive pole in the cytoplasmic part. Based on the CCR2b model, we suggest that the main functional residues fall in the D25YDYGAPCHKFD36 region, and the negative electrostatic feature is a non-specific, but necessary, factor for ligands or gp120/CD4 binding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-002-0089-6DOI Listing

Publication Analysis

Top Keywords

2ss model
16
primate ccr2b
12
ccr2b
10
human ccr2b
8
molecular dynamics
8
dynamics simulation
8
disulfide bond
8
region d25ydygapchkfd36
8
model
6
2ss
5

Similar Publications

Hydrogen sulfide-mediated inhibition of ROCK exerts a vasoprotective effecton ischemic brain injury.

Am J Physiol Cell Physiol

December 2024

Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.

As a gas molecule, hydrogen sulfide (HS) exerts neuroprotective effects. Despite its recognized importance, there remains a need for a deeper understanding of HS's impact on vascular smooth muscle cells and its role in ischemic brain injury. This study employs encompassing cultured primary cerebral vascular smooth muscle cells, oxygen-glucose deprivation/reoxygenation model, in vitro vascular tone assessments, in vivo middle cerebral artery occlusion and reperfusion experimentation in male rats, and the utilization of ROCK knockout, to unravel the intricate relationship between H2S and cerebrovascular diastolic function.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), as a key gas signaling molecule, plays an important role in regulating various diseases, with appropriate concentrations providing antioxidative, anti-inflammatory, and anti-apoptotic effects. The specific role of HS in acute hypoxic injury remains to be clarified. This study focuses on the HS donor sodium hydrosulfide (NaHS) and explores its protective effects and mechanisms against acute hypoxic lung injury.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) in environments with temperatures below 100 °C is generally assumed to be of microbial origin, while abiotic HS production is typically restricted to higher temperatures (T). In this study, we report an abiotic process for sulfidogenesis through the reduction of elemental sulfur (S) by hydrogen (H), mediated by pyrite (FeS). The process was investigated in detail at pH 4 and 80 °C, but experimental conditions ranged between 40 and 80 °C and pH 4-6.

View Article and Find Full Text PDF

Mimicking enzymatic processes carried out by natural enzymes, which are highly efficient biocatalysts with key roles in living organisms, attracts much interest but constitutes a synthetic challenge. Biological metal-organic frameworks (bioMOFs) are potential candidates to be enzyme catalysis mimics, as they offer the possibility to combine biometals and biomolecules into open-framework porous structures capable of simulating the catalytic pockets of enzymes. In this work, we first study the catalase activity of a previously reported bioMOF, derived from the amino acid -serine, with formula {CaCu[(,)-serimox](OH)(HO)} · 39HO () (serimox = bis[(S)-serine]oxalyl diamide), which is indeed capable to mimic catalase enzymes, in charge of preventing cell oxidative damage by decomposing, efficiently, hydrogen peroxide to water and oxygen (2HO → 2 HO + O).

View Article and Find Full Text PDF

Deuterium (H) spin relaxation of CHD methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B dependence of the H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(ω) and J(2ω). In this study, the linear relation between H relaxation rates at B fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!