Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist.

Proc Natl Acad Sci U S A

National Institute of Mental Health Psychoactive Drug Screening Program and Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, OH 44106, USA.

Published: September 2002

Salvia divinorum, whose main active ingredient is the neoclerodane diterpene Salvinorin A, is a hallucinogenic plant in the mint family that has been used in traditional spiritual practices for its psychoactive properties by the Mazatecs of Oaxaca, Mexico. More recently, S. divinorum extracts and Salvinorin A have become more widely used in the U.S. as legal hallucinogens. We discovered that Salvinorin A potently and selectively inhibited (3)H-bremazocine binding to cloned kappa opioid receptors. Salvinorin A had no significant activity against a battery of 50 receptors, transporters, and ion channels and showed a distinctive profile compared with the prototypic hallucinogen lysergic acid diethylamide. Functional studies demonstrated that Salvinorin A is a potent kappa opioid agonist at cloned kappa opioid receptors expressed in human embryonic kidney-293 cells and at native kappa opioid receptors expressed in guinea pig brain. Importantly, Salvinorin A had no actions at the 5-HT(2A) serotonin receptor, the principal molecular target responsible for the actions of classical hallucinogens. Salvinorin A thus represents, to our knowledge, the first naturally occurring nonnitrogenous opioid-receptor subtype-selective agonist. Because Salvinorin A is a psychotomimetic selective for kappa opioid receptors, kappa opioid-selective antagonists may represent novel psychotherapeutic compounds for diseases manifested by perceptual distortions (e.g., schizophrenia, dementia, and bipolar disorders). Additionally, these results suggest that kappa opioid receptors play a prominent role in the modulation of human perception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129372PMC
http://dx.doi.org/10.1073/pnas.182234399DOI Listing

Publication Analysis

Top Keywords

kappa opioid
28
opioid receptors
20
salvinorin
9
salvinorin potent
8
naturally occurring
8
occurring nonnitrogenous
8
kappa
8
cloned kappa
8
receptors expressed
8
opioid
7

Similar Publications

Neurobiological mechanisms of nicotine's effects on feeding and body weight.

Neurosci Biobehav Rev

January 2025

Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China. Electronic address:

Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure.

View Article and Find Full Text PDF

Background: Anrikefon (HSK21542), a potent and selective peripheral kappa opioid receptor (KOR) agonist developed by Haisco, effectively blocks pain and itch signals.

Aim: To develop a population pharmacokinetic (PK) model for anrikefon and conduct exposure-response (E-R) analysis for safety and efficacy in postoperative pain patients.

Method: The Population PK analysis uses NONMEM software with data from six trials.

View Article and Find Full Text PDF

TEMPORARY REMOVAL: Targeting the kappa opioid receptor for analgesia and antitumour effects.

Br J Anaesth

January 2025

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA. Electronic address:

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Public Health Discussions on Social Media: Evaluating Automated Sentiment Analysis Methods.

JMIR Form Res

January 2025

Department of Health Administration, The College of Health Professions, Central Michigan University, Mt Pleasant, MI, United States.

Article Synopsis
  • Sentiment analysis is a key method for analyzing text, especially in social media research, where the choice between manual and automated methods is crucial.
  • The study compared several sentiment analysis tools, including VADER, TEXT2DATA, LIWC-22, and ChatGPT 4.0, against manually coded sentiment scores from YouTube comments on the opioid crisis, assessing factors like ease of use and cost.
  • Findings revealed that LIWC-22 excelled in identifying sentiment patterns, while VADER was best at classifying negative comments, but overall, automated tools showed only fair agreement with manual coding, with ChatGPT performing poorly.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!