In plants, the first step in betaine synthesis was shown to be catalyzed by a novel Rieske-type iron-sulfur enzyme, choline monooxygenase (CMO). Although CMO so far has been found only in Chenopodiaceae and Amaranthaceae, the recent genome sequence suggests the presence of a CMO-like gene in Arabidopsis, a betaine non-accumulating plant. Here, we examined the functional properties of CMO expressed in Escherichia coli, cyanobacterium, and Arabidopsis thaliana. We found that E. coli cells in which choline dehydrogenase (CDH) was replaced with spinach CMO accumulate betaine and complement the salt-sensitive phenotype of the CDH-deleted E. coli mutant. Changes of Cys-181 in spinach CMO to Ser, Thr, and Ala and His-287 to Gly, Val, and Ala abolished the accumulation of betaine. The Arabidopsis CMO-like gene was transcribed in Arabidopsis, but its protein was not detected. When the Arabidopsis CMO-like gene was expressed in E. coli, the protein was detected but was found not to promote betaine sysnthesis. Overexpression of spinach CMO in E. coli, Synechococcus sp. PCC7942, and Arabidopsis conferred resistance to abiotic stress. These facts clearly indicate that CMO, but not the CMO-like protein, could oxidize choline and that Cys-181 and His-287 are involved in the binding of Fe-S cluster and Fe, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M205965200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!