A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. | LitMetric

Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively.

J Neurosci Methods

School of Electronics, Telecommunication and Computer Engineering, Hankuk Aviation University, Koyang City, South Korea.

Published: July 2002

Mutants with abnormal patterns of locomotion, also known as uncoordinated (Unc) mutants, have facilitated the genetic dissection of many important aspects of nervous system function and development in the nematode Caenorhabditis elegans. Although a large number of distinct classes of Unc mutants can be distinguished by an experienced observer, precise quantitative definitions of these classes have not been available. Here we describe a new approach for using automatically-acquired image data to quantify the locomotion patterns of wild-type and mutant worms. We designed an automated tracking and imaging system capable of following an individual animal for long time periods and saving a time-coded series of digital images representing its motion and body posture over the course of the recording. We have also devised methods for measuring specific features from these image data that can be used by the classification and regression tree classification algorithm to reliably identify the behavioral patterns of specific mutant types. Ultimately, these tools should make it possible to evaluate with quantitative precision the behavioral phenotypes of novel mutants, gene knockout lines, or pharmacological treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-0270(02)00117-6DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
behavioral phenotypes
8
unc mutants
8
image data
8
machine vision
4
vision analyze
4
analyze classify
4
classify caenorhabditis
4
elegans behavioral
4
phenotypes quantitatively
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!