Experimental observation of radiation from cherenkov wakes in a magnetized plasma.

Phys Rev Lett

Department of Energy and Environmental Science, Graduate School of Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.

Published: August 2002

A proof-of-principle experiment demonstrates the generation of radiation from the Cherenkov wake excited by an ultrashort- and ultrahigh-power pulse laser in a perpendicularly magnetized plasma. The frequency of the radiation is in the millimeter range (up to 200 GHz). The intensity of the radiation is proportional to the magnetic field intensity as expected by theory. Polarization of the emitted radiation is also detected. The difference in the frequency of the emitted radiation between these experiments and previous theory can be explained by the electrons' oscillation in the electric field of a narrow column of ions in the focal region.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.89.065003DOI Listing

Publication Analysis

Top Keywords

radiation cherenkov
8
magnetized plasma
8
emitted radiation
8
radiation
6
experimental observation
4
observation radiation
4
cherenkov wakes
4
wakes magnetized
4
plasma proof-of-principle
4
proof-of-principle experiment
4

Similar Publications

Observations of Cherenkov-Like Radial Wake in Water Waves.

Adv Sci (Weinh)

January 2025

Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.

Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.

View Article and Find Full Text PDF

We demonstrate experimentally an efficient terahertz emitter that consists of a 20 µm thick layer of LiNbO clamped between a fused silica substrate and a Si semicone. A focused laser beam from an ultrafast optical oscillator propagates in the LiNbO layer and emits a Cherenkov cone of terahertz radiation to the Si semicone. The radiation is totally internally reflected by the semicone's convex surface and escapes the semicone through its base as a collimated beam.

View Article and Find Full Text PDF

Novel high-stopping power scintillators for medical applications.

Proc SPIE Int Soc Opt Eng

February 2024

Radiation Monitoring Devices, Inc., 44 Hunt St., Watertown, MA, USA 02472- 4624.

Development of new scintillator materials is a continuous effort, which recently has been focused on materials with higher stopping power. Higher stopping power can be achieved if the compositions include elements such as Tl (Z=81) or Lu (Z=71), as the compounds gain higher densities and effective atomic numbers. In context of medical imaging this translates into high detection efficiency (count rates), therefore, better image quality (statistics, thinner films) or lower irradiation doses to patients in addition to lowering of cost.

View Article and Find Full Text PDF

Cherenkov radiation is emitted during x-ray irradiation in a linear accelerator (LINAC). Cherenkov light contains many short wavelength components, including ultraviolet (UV) light, which is well-known for its bactericidal effects. A similar phenomenon is probable for human cancer cells.

View Article and Find Full Text PDF

Vortex free-electron radiation has attracted considerable interest because of its promising potential for applications in communication, high-density radiation sources, and particle detection. Here, we reveal angular momentum modulation of vortex Cherenkov radiation using subwavelength silicon waveguides. The topological charge of vortex radiation field can be controlled by the position parameters of two electron beams based on the rotational symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!