Effective temperatures of a driven system near jamming.

Phys Rev Lett

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.

Published: August 2002

Fluctuations in a model of a sheared, zero-temperature foam are studied numerically. Five different quantities that independently reduce to the true temperature in an equilibrium thermal system are calculated. One of the quantities is calculated up to an unknown coefficient. The other four quantities have the same value and all five have the same shear-rate dependence. These results imply that statistical mechanics is useful for the system even though it is far from thermal equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.89.095703DOI Listing

Publication Analysis

Top Keywords

effective temperatures
4
temperatures driven
4
driven system
4
system jamming
4
jamming fluctuations
4
fluctuations model
4
model sheared
4
sheared zero-temperature
4
zero-temperature foam
4
foam studied
4

Similar Publications

This study is aimed at analyzing food safety knowledge and practices among food handlers in restaurants and street food markets in Dhaka, Bangladesh. Inadequate food handling practices remain a major worldwide health problem and are one of the main causes of food-related diseases. In Bangladesh, where the restaurant business is expanding quickly, food safety must be upheld to stop foodborne illness outbreaks.

View Article and Find Full Text PDF

Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System.

ACS Pharmacol Transl Sci

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.

Infectious diseases have affected 13.7 million patients, placing a heavy burden on society. Furthermore, inappropriate and unrequited utilization of antibiotics has led to antimicrobial resistance worldwide.

View Article and Find Full Text PDF

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

We discuss the challenges associated with achieving high energy efficiency in electrochemical ammonia synthesis at near-ambient conditions. The current Li-mediated process has a theoretical maximum energy efficiency of ∼28%, since Li deposition gives rise to a very large effective overpotential. As a starting point toward finding electrocatalysts with lower effective overpotentials, we show that one reason why Li and alkaline earth metals work as N reduction electrocatalysts at ambient conditions is that the thermal elemental processes, N dissociation and NH desorption, are both facile at room temperature for these metals.

View Article and Find Full Text PDF

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!