Role of long jumps in surface diffusion.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Physics, National Ukrainian Academy of Sciences, 03650 Kiev, Ukraine.

Published: June 2002

We analyze a probability of atomic jumps for more than one lattice spacing in activated surface diffusion. First, we studied a role of coupling between the x and y degrees of freedom for the diffusion in a two-dimensional substrate potential. Simulation results show that in the underdamped limit the average jump length scales with the damping coefficient eta as proportional, variant eta(-sigma(lambda)) with 1/2

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.65.061107DOI Listing

Publication Analysis

Top Keywords

surface diffusion
8
role long
4
long jumps
4
jumps surface
4
diffusion analyze
4
analyze probability
4
probability atomic
4
atomic jumps
4
jumps lattice
4
lattice spacing
4

Similar Publications

Multidimensional structural analyses revealed a correlation between thalamic atrophy and white matter degeneration in idiopathic dystonia.

Brain Commun

January 2025

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.

Although aberrant changes in grey and white matter are core features of idiopathic dystonia, few studies have explored the correlation between grey and white matter changes in this disease. This study aimed to investigate the coupling correlation between morphological and microstructural alterations in patients with idiopathic dystonia. Structural T1 imaging and diffusion tensor imaging were performed on a relatively large cohort of patients.

View Article and Find Full Text PDF

A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.

View Article and Find Full Text PDF

Pathology of peritonitis in cattle.

J Comp Pathol

January 2025

Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Although peritonitis is highly prevalent in cattle, there have been only limited studies on the pathology of this condition. We describe the gross and histological aspects of primary and secondary peritonitis in cattle based on necropsy reports of 46 cases. Twenty-six were female (26/46; 56.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Mg-B-O Coated P2-Type Hexagonal NaMnNiO as a High-Performance Cathode for Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.

P2-type NaMnNiO as the cathode for sodium-ion batteries, has a relatively high theoretical specific capacity, but its unstable crystal structure and undesirable phase transitions lead to rapid capacity decay. In this work, Mg-B-O coated NaMnNiO microspheres have been synthesized via a liquid-phase method based on solvothermal synthesized NaMnNiO. The Mg-B-O coating layer significantly improves the electrochemical performance, including specific capacity, rate capability, and cycle stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!