We describe the enantiomeric and enantiotopic analysis of the NMR spectra of compounds derived from the functionalized cone-shaped core, cyclotriveratrylenes (CTV), dissolved in weakly oriented lyotropic chiral liquid crystals (CLCs) based on organic solutions of poly-gamma-benzyl-L-glutamate. The CTV core lacks prostereogenic as well as stereogenic tetrahedral centers. However, depending on the pattern of substitution, chiral and achiral compounds with different symmetries can be obtained. Thus, symmetrically nonasubstituted CTVs (C(3) symmetry) are optically active and exhibit enantiomeric isomers, while symmetrically hexasubstituted (C(3v) symmetry) derivatives are prochiral and possess enantiotopic elements. In the first part we use (2)H and (13)C NMR to study two nonasubstituted (-OH or -OCH(3)) CTVs, where the ring methylenes are fully deuterated, and show for the first time that the observation of enantiomeric discrimination of chiral molecules with a 3-fold symmetry axis is possible in a CLC. It is argued that this discrimination reflects different orientational ordering of the M and P isomers, rather than specific chiral short-range solvent-solute interactions that may affect differently the magnetic parameters of the enantiomers or even their geometry. In the second part we present similar measurements on hexasubstituted CTV with flexible side groups (-OC(O)CH(3) and the, partially deuterated bidentate, -OCH(2)CH(2)O-), having on the average C(3v) symmetry. No spectral discrimination of enantiotopic sites was detected for the -OC(O)CH(3) derivative. This is consistent with a recent theoretical work (J. Chem. Phys. 1999, 111, 6890) that indicates that in C(3v) molecules no chiral discrimination between enantiotopic elements, based on ordering, is possible. In contrast, a clear splitting was observed in the (2)H spectra of the enantiotopic deuterons of the side groups in the tri(dioxyethylene)-CTV. It is argued that this discrimination reflects different ordering characteristics of the various, rapidly (on the NMR time scale) interconverting conformers of this compound. Assuming two twisted structures for each of the dioxyethylene side groups, four different conformers are expected, comprising two sets of enantiomeric pairs with, respectively, C(3) and C(1) symmetries. Differential ordering and/or fractional population imbalance of these enantiomeric pairs leads to the observed spectral discrimination of sites in the side chains that on average form enantiotopic pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja020269dDOI Listing

Publication Analysis

Top Keywords

c3v symmetry
12
side groups
12
enantiomeric enantiotopic
8
enantiotopic analysis
8
enantiotopic elements
8
argued discrimination
8
discrimination reflects
8
spectral discrimination
8
discrimination enantiotopic
8
enantiomeric pairs
8

Similar Publications

A Crystalline NiX Complex.

J Am Chem Soc

December 2024

Chemistry Research Laboratory, Department of Chemistry, Oxford OX1 3TA, U.K.

High-valent nickel species are implicated as intermediates in industrially relevant chemical transformations and in the catalytic cycles of metalloenzymes. Although a small number of tetravalent NiX complexes have been crystallographically characterized, higher nickel valence states have not been identified. Here we report a stable, crystalline NiX complex, Ni(BeCp) (; cyclopentadienyl anion (Cp)), formed by the insertion of zerovalent nickel into three Be-Be bonds.

View Article and Find Full Text PDF

Design of High-Performance Infrared Nonlinear Optical PAsS with Perfectly Aligned Polar Molecular Cage via a Bipolar-Axis-Symmetry Coupling Strategy.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Strong polar molecular cages have recently emerged as novel functional building units for high-performance infrared nonlinear optical (IR NLO) crystals. However, these highly polar molecular cages often arrange themselves in a way that cancels out their polarity, leading to a more energetically stable state. As a result, most cage crystal formations tend to crystallize in centrosymmetric space groups, which conflicts with the primary requirement for NLO crystals.

View Article and Find Full Text PDF

Cationic sodium (Na) clusters incorporated into a dehydrated Na-form LTA (Na-LTA) zeolite by the adsorption of Na atoms exhibit diamagnetism regardless of their adsorption amount. These clusters preferentially form in β-cages under the condition of dilute adsorption. In this study, photochromism was observed on the dilute Na-adsorbed Na-LTA, which showed a color change from yellow-green to dark blue-green at room temperature.

View Article and Find Full Text PDF

Propeller-Shaped Blatter-Based Triradicals: Distortion-Free Triangular Spin System and Spin-State-Dependent Photophysical Properties.

Angew Chem Int Ed Engl

November 2024

Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan.

Herein, we report the synthesis and properties of triptycene-based C- and C-symmetric stable triradicals. SQUID magnetometry showed the propeller-shaped triradicals were both an antiferromagnetic equilateral triangle spin system with small spin-spin interactions J/k~-120 K and -106 K, leading to ca. 4/6 coexistence of the doublet/quartet states in thermal equilibrium at room temperature.

View Article and Find Full Text PDF

Nonadiabatic quantum dynamics are carried out to illustrate the photoionized spectrum of the cyanopropyne (CH3-C≡C-C≡N) as reported in recent experimental measurements [Lamarre et al., J. Mol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!