Reported values for growth kinetic parameters show an order in competitivity of heterotrophic sulfate reducing bacteria>methanogens>homoacetogens for the substrate hydrogen. This order suggests that methanogens can succesfully compete with consortia of heterotrophic SRB and homoacetogens when H2/CO2 is present as sole substrate. However, we found in experiments using gas-lift reactors inoculated with anaerobic sludge and fed with H2/CO2 and sulfate, that heterotrophic sulfate reduction rapidly and completely outcompeted methanogenesis, whereas a low amount of acetate was formed. Thus, in disagreement with the above competitivity order, hydrogen is more readily consumed by homoacetogenesis than by methanogenesis, indicating that the competition is not kinetically determined. The superior settling velocity of sulfidogenic-acetogenic sludge compared to that of methanogenic sludge suggests that the former sludge is better retained, which can explain the predominance of sulfate reduction/homoacetogenesis over methanogenesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heterotrophic sulfate
8
competition sulfate
4
sulfate reducers
4
reducers methanogens
4
methanogens homoacetogens
4
homoacetogens gas-lift
4
gas-lift reactor
4
reactor reported
4
reported values
4
values growth
4

Similar Publications

The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.

View Article and Find Full Text PDF

Microbial synergy mechanism of hydrogen flux influence on hydrogen-based partial denitrification coupled with anammox in a membrane biofilm reactor.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The hydrogen-based partial denitrification coupled with anammox (H-PDA) biofilm system effectively achieves low-carbon and high-efficiency biological nitrogen removal. However, the effects and biological interaction mechanism of H flux with the H-PDA system have not yet been understood. This study assessed the effects of H flux on interactions among anammox bacteria (AnAOB), denitrifying bacteria (DB), and sulfate-reducing bacteria (SRB) coexisting in a H-PDA system.

View Article and Find Full Text PDF

The removal of selenite (Se(IV)) and cadmium (Cd(II)) from low-carbon wastewater presents significant challenges. However, the addition of external organic carbon sources is limited in application due to the high cost and potential for secondary pollution. This study introduced a "hibernation-like microbial survival strategy", enabling efficient removal of Se(IV) and Cd(II) in sulfur autotrophic reactor, with S acting as the electron donor.

View Article and Find Full Text PDF

Novel mixotrophic denitrification biofilter for efficient nitrate removal using dual electron donors of polycaprolactone and thiosulfate.

Bioresour Technol

February 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.

A novel mixotrophic denitrification biofilter for nitrate removal using polycaprolactone and thiosulfate (MD-PT) as electron donors was investigated. MD-PT achieved high nitrate removal efficiency of approximately 99.8 %.

View Article and Find Full Text PDF
Article Synopsis
  • Thermodesulfovibrio is a genus of thermophilic sulfate-reducing bacteria, currently recognized to have five species.
  • Two new strains, 3907-1M and 3462-1, were isolated from hot springs, demonstrating the ability to use hydrogen and acetate for growth, with strain 3907-1M also showing autotrophic growth potential, a first for this genus.
  • Genomic and phylogenomic analyses led to the classification of these strains as new species, indicating that the Thermodesulfovibrio genus has previously underestimated ecological flexibility and metabolic capabilities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!