Purpose: To determine the relative expression of metallothionein isoforms and their differential induction by oxidative stress in cultured RPE cells and to localize the isoforms in the human chorioretinal complex.
Methods: Total RNA was isolated from cultured human retinal pigment epithelial cells using TRI-Reagent. An "anchor-oligo-dT primer" was used for the synthesis of cDNA, reverse transcribed using avian reverse transcriptase and subsequently subjected to PCR analysis using oligonucleotides specific for metallothionein (MT) I, MT II, and MT III. The selected transcripts were then used to assess the expression of the above elements in fixed tissue sections by in situ hybridization. Cultured RPE cells were allowed to phagocytose bovine photoreceptor outer segments (ROS) or were treated with H(2)O(2) for 6 hours and then analyzed by RT-PCR or in situ hybridization to ascertain the effect of oxidative stress on metallothionein mRNA isoform expression.
Results: Relative density analysis of amplified products demonstrate the presence of MT I, MT II and MT III in RPE cells, with an apparent relative expression MT II > MT I > MT III [corrected]. Expression of MT I and MT II mRNA was increased by both phagocytosis and hydrogen peroxide, however MT III was not induced by either stress. In situ hybridization corroborated the findings of the RT-PCR analysis and showed that MTs were mainly localized in the RPE and the photoreceptor layer of the retina.
Conclusions: The localization of MT and the response of MT to oxidative stress are consistent with a role for MT as an antioxidant in the RPE and retina. Studies are ongoing to determine the specific mechanisms of action of these antioxidants in RPE cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1076/ceyr.24.1.12.5426 | DOI Listing |
Stem Cell Res Ther
December 2024
Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
Background: Mesenchymal stem cells may have neuroprotective and tissue regenerative capabilities and the potential to rescue retinal degeneration in chorioretinal diseases including myopic chorioretinal atrophy. Transplantation of human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) suspensions has been clinically conducted to treat retinal degenerative diseases. However, serious side effects including proliferative vitreoretinopathy and epiretinal membrane formation have been reported.
View Article and Find Full Text PDFDiabetes
December 2024
Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Advances in fundus imaging are revealing disruptions in the neurovascular unit in diabetic retinopathy (DR). In the era of anti-VEGF treatment, a thorough characterization of neurodegeneration is imperative until DR patients are sufficiently cured. Here we demonstrate that extracellular mitochondria exacerbate retinal pigment epithelium (RPE) degeneration and inflammation in DR.
View Article and Find Full Text PDFbioRxiv
December 2024
Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India.
Active enzymes during catalyzing chemical reactions, have been found to generate significant mechanical fluctuations, which can influence the dynamics of their surroundings. These phenomena open new avenues for controlling mass transport in complex and dynamically inhomogeneous environments through localized chemical reactions. To explore this potential, we studied the uptake of transferrin molecules in retinal pigment epithelium (RPE) cells via clathrin-mediated endocytosis.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
As the SARS-CoV-2 coronavirus continues to evolve and infect the global population, many individuals are likely to suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Manifestations of PASC include vision symptoms, but little is known about the ability of SARS-CoV-2 to infect and impact the retinal cells. Here, we demonstrate that SARS-CoV-2 can infect and perturb the retinal pigment epithelium (RPE) in vivo, after intranasal inoculation of a transgenic mouse model of SARS-CoV-2 infection, and in cell culture.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea. Electronic address:
Inflammation is a major mechanism of photoreceptor cell death in the retina during macular degeneration leading to the blindness. In this study, we investigated the role of the kinase molecule Zap70, which is an inflammatory regulator of the systemic immune system, to elucidate the control mechanism of inflammation in the retina. We observed activated microglial cells migrated and populated the retinal layer following blue LED-induced photoreceptor degeneration and activated microglial cells in the LED-injured retina expressed Zap70, unlike the inactive microglial cells in the normal retina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!