Hyaluronan is a major component of the epidermal extracellular matrix, is actively synthesized by keratinocytes and shows fast matrix turnover in the stratified epithelium. We probed the importance of hyaluronan synthesis in keratinocytes by establishing cell lines carrying the exogenous hyaluronan synthase 2 (Has2) gene in sense and antisense orientations to increase and decrease their hyaluronan synthesis, respectively. Compared with cell lines transfected with the vector only, most clones containing the Has2 sense gene migrated faster in an in vitro wounding assay, whereas Has2 antisense cells migrated more slowly. Has2 antisense clones showed delayed entry into the S phase of cell cycle following plating, smaller lamellipodia and less spreading on the substratum. The decrease of hyaluronan on the undersurface of Has2 antisense cells was associated with an increased area of adhesion plaques containing vinculin. Exogenous hyaluronan added to the keratinocyte cultures had a minor stimulatory effect on migration after wounding but did not restore the reduced migratory ability of Has2 antisense cells. Hyaluronan decasaccharides that displace receptor bound hyaluronan in keratinocytes, and Streptomyces hyaluronidase sufficient to remove most cell surface hyaluronan had little effect on cell migration. The results suggest that the dynamic synthesis of hyaluronan directed by Has2, rather than the abundance of pericellular hyaluronan, controls keratinocyte migration, a cell function vital for the repair of squamous epithelia following wounding.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.00042DOI Listing

Publication Analysis

Top Keywords

has2 antisense
16
hyaluronan
12
antisense cells
12
adhesion plaques
8
sense antisense
8
hyaluronan synthase
8
has2
8
synthase has2
8
hyaluronan synthesis
8
cell lines
8

Similar Publications

Aims: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored.

View Article and Find Full Text PDF

HAS2 antisense RNA 1 (HAS2-AS1) is a long noncoding RNA that has increased expression in mature granulosa cells (GCs) and contributes to cumulus expansion by regulating HAS2 expression. However, the roles of HAS2-AS1 during the pathological process of polycystic ovary syndrome (PCOS) are still unclear. This study investigated the roles of HAS2-AS1 in patients with PCOS.

View Article and Find Full Text PDF

Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19.

Mol Biomed

May 2022

Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.

COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies.

View Article and Find Full Text PDF

Hyaluronan (HA) is a ubiquitous extracellular matrix component playing a crucial role in the regulation of cell behaviors, including cancer. Aggressive breast cancer cells tend to proliferate, migrate and metastatize. Notably, triple-negative breast cancer cells lacking the expression of estrogen receptor (ER) as well as progesterone receptor and HER2 are more aggressive than ER-positive ones.

View Article and Find Full Text PDF

Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation.

Methods Mol Biol

January 2022

Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.

The ubiquitous extracellular glycosaminoglycan hyaluronan (HA) is a polymer composed of repeated disaccharide units of alternating D-glucuronic acid and D-N-acetylglucosamine residues linked via alternating β-1,4 and β-1,3 glycosidic bonds. Emerging data continue to reveal functions attributable to HA in a variety of physiological and pathological contexts. Defining the mechanisms regulating expression of the human hyaluronan synthase (HAS) genes that encode the corresponding HA-synthesizing HAS enzymes is therefore important in the context of HA biology in health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!