Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is widely expressed in both EBV-infected cells and EBV-associated malignancies. However, the function of LMP2A is still veiled. In this study, LMP2A was found to induce the kinase activities of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase/stress-activated protein kinase JNK/SAPK. Furthermore, the downstream effector c-Jun showed hyperphosphorylation under LMP2A expression. The phosphorylation could be inhibited by the ERK pathway inhibitor PD98059, indicating that ERK may contribute to the phosphorylation of c-Jun in LMP2A-expressing cells. The impact on c-Jun phosphorylation by mitogen-activated protein kinase (MAPK) is suggested to increase c-Jun protein stability, and this was also observed in LMP2A-expressing cells by a protein synthesis inhibition assay. Moreover, LMP2A-induced cell invasion was inhibited in the presence of the ERK pathway inhibitor. Taken together, we suggest that LMP2A may exploit MAPK kinases and affect both the phosphorylation and stability of c-Jun protein. Additionally, LMP2A may thereby promote the mobility of the cells. In doing so, it may enhance the mobility of EBV-infected cells and contribute to the metastatic process of malignant cells. Here we demonstrated the first evidence of LMP2A-induced migration and the underlying pathways accounting for it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136421 | PMC |
http://dx.doi.org/10.1128/jvi.76.18.9556-9561.2002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!