Hepatitis C virus-like particles (HCV-LPs) containing the structural proteins of HCV H77 strain (1a genotype) was used as a model for HCV virion to study virus-cell interaction. HCV-LPs showed a buoyant density of 1.17 to 1.22 g/cm(3) in a sucrose gradient and formed double-shelled particles 35 to 49 nm in diameter. Flow cytometry analysis by an indirect method (detection with anti-E2 antibody) and a direct method (use of dye-labeled HCV-LPs) showed that HCV-LPs binds to several human hepatic (primary hepatocytes, HepG2, HuH7, and NKNT-3) and T-cell (Molt-4) lines. HCV-LPs binding to cells occurred in a dose- and calcium-dependent manner and was not mediated by CD81. Scatchard plot analysis suggests the presence of two binding sites for HCV-LPs with high (K(d) approximately 1 microg/ml) and low (K(d) approximately 50 to 60 microg/ml) affinities of binding. Anti-E1 and -E2 antibodies inhibited HCV-LPs binding to cells. While preincubation of HCV-LPs with very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), or high-density lipoprotein (HDL) blocked its binding to cells, preincubation of cells with VLDL, LDL, HDL, or anti-LDL-R antibody did not. Confocal microscopy analysis showed that, after binding to cells, dye-labeled HCV-LPs were internalized into the cytoplasm. This process could be inhibited with anti-E1 or anti-E2 antibodies, suggesting that E1 and E2 proteins mediate HCV-LPs binding and, subsequently, their entry into cells. Altogether, our results indicate that HCV-LPs can be used to further characterize the mechanisms involved in the early steps of HCV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136469PMC
http://dx.doi.org/10.1128/jvi.76.18.9335-9344.2002DOI Listing

Publication Analysis

Top Keywords

binding cells
16
hcv-lps binding
12
hcv-lps
11
hepatitis virus-like
8
virus-like particles
8
binding
8
dye-labeled hcv-lps
8
cells preincubation
8
cells
7
interaction hepatitis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!