The double mutant H117G/N42C azurin exhibits tetragonal type 2 copper site characteristics with Cys(42) as one of the copper ligands as concluded from spectroscopic evidence (UV-visible, EPR, and resonance Raman). Analysis of the kinetics of copper uptake by the apoprotein by means of stopped flow spectroscopy suggests that the solvent-exposed Cys(42) assists in binding the metal ion and carrying it over to the active site where it becomes coordinated by, among others, a second cysteine, Cys(112). A structure is proposed in which the loop from residue 36 to 47 has rearranged to form a tetragonal type 2 copper site with Cys(42) as one of the ligands. The process of copper uptake as observed for the double mutant may be relevant for a better understanding of the way copper chaperones accept and transfer metal ions in the living cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M202977200 | DOI Listing |
Nanophotonics
January 2025
Departments of Optics and General Physics, Francisk Skorina Gomel State University, Sovetskaya Str. 104, Gomel 246019, Belarus.
Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.
View Article and Find Full Text PDFOrg Lett
January 2025
Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Aoba-ku, Sendai, Japan.
Our efforts toward the synthesis of the marine natural product portimine are described. The key to the synthesis of the skeleton is a stereoretentive copper-catalyzed C()-C() Stille-type cross-coupling that enables the convergent assembly of functionalized fragments. The core skeleton of portimine was constructed via ring-closing metathesis and transannular acetal formation.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
The formation of novel complexes from so far non-investigated ligands and different metal centers is important for the development of new functional materials such as (photo)catalysts or biologically active compounds. Still, promising strategies to quickly and systematically investigate the complexation behavior of selected ligands are rare. We developed an NMR-based screening approach to monitor changes within reaction mixtures containing metals and ligands on a small scale a simple but reliable protocol.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland.
Burkholderia cenocepacia H111 is an obligate aerobic bacterium which has been isolated from a cystic fibrosis (CF) patient. In CF lungs the environment is considered micro-oxic or even oxygen-depleted due to bacterial activities and limited oxygen diffusion in the mucus layer. To adapt to low oxygen concentrations, bacteria possess multiple terminal oxidases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!