Phage display of recombinant antibodies toward Burkholderia pseudomallei exotoxin.

J Biochem Mol Biol Biophys

Faculty of Science and Technology, Centre for Gene Analysis and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D. E., Malaysia.

Published: February 2002

We have used the phagemid pComb3H to construct recombinant phages displaying the single chain variable fragment (ScFv) towards exotoxin of Burkholderia pseudomallei. Variable heavy and light chain fragments were amplified from the hybridoma 6E6A8F3B line, with a wide spectrum of primers specific to mouse antibody genes. Through overlapping extension polymerase chain reaction, the heavy and light chain fragments were linked to form the ScFv which was subsequently cloned into the phage display vector and transformed into ER2537 cells to yield a complexity of 10(8) clones. The transformants were screened by four rounds of biopanning against the exotoxin and resulted in selective enrichment of exotoxin-binding antibodies by 301 fold. The phage pool from the final round of selection displayed antibodies of high-affinity to the exotoxin as demonstrated by ELISA. Several clones were selected randomly from this pool and analysed by restriction enzyme digestion, fingerprinting and sequencing. Restriction analysis confirmed that all clones carried a 700-800 bp insert whose sequences, in general, corresponded to that of mouse IgG. Fingerprinting profiles delineated the antibodies into two families with different CDR sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10258140290010232DOI Listing

Publication Analysis

Top Keywords

phage display
8
burkholderia pseudomallei
8
heavy light
8
light chain
8
chain fragments
8
display recombinant
4
antibodies
4
recombinant antibodies
4
antibodies burkholderia
4
exotoxin
4

Similar Publications

Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.

View Article and Find Full Text PDF

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Mechanistic Analysis of Peptide Affinity to Single-Walled Carbon Nanotubes and Volatile Organic Compounds Using Chemiresistors.

ACS Appl Mater Interfaces

December 2024

Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.

Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.

View Article and Find Full Text PDF

Biologically produced protein drugs are generally susceptible to degradation by proteases and often exhibit immunogenicity. To address this issue, mirror-image peptide/protein binders consisting of D-amino acids have been developed so far through the mirror-image phage display technique. Here, we develop a mirror-image protein binder derived from a monobody, one of the promising protein scaffolds, utilizing two notable technologies: chemical protein synthesis and TRAP display, an improved version of mRNA display.

View Article and Find Full Text PDF

Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!