Cognitive-behavioral treatment of high anger drivers.

Behav Res Ther

Department of Psychology, Tri-Ethnic Center for Prevention Research, Colorado State University, Fort Collins 80523-1876, USA.

Published: August 2002

Relaxation and cognitive-relaxation interventions were compared to a no treatment control in the treatment of high anger drivers. The cognitive portion of the cognitive-relaxation condition adapted the style of Beck's cognitive therapy, particularly use of Socratic questions and behavioral experiments and tryouts, to driving anger reduction. Both interventions lowered indices of driving anger and hostile and aggressive forms of expressing driving anger and increased adaptive/constructive ways of expressing driving anger. The cognitive-relaxation intervention also lowered the frequency of risky behavior. Both interventions lowered trait anger as well. Limitations and implications for treatment and research were discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-7967(01)00067-5DOI Listing

Publication Analysis

Top Keywords

driving anger
16
treatment high
8
high anger
8
anger drivers
8
interventions lowered
8
expressing driving
8
anger
7
cognitive-behavioral treatment
4
drivers relaxation
4
relaxation cognitive-relaxation
4

Similar Publications

Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

Brain Struct Funct

January 2025

Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.

View Article and Find Full Text PDF

mRNA decay pre-complex assembly drives timely cell-state transitions during differentiation.

Cell Rep

December 2024

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Genetic Medicine, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address:

Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein brain tumor (Brat) promotes the degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and uncommitted intermediate neural progenitors (immature INPs). We identify ubiquitin-specific protease 5 (Usp5) as a candidate Brat interactor essential for the degradation of Brat target mRNAs.

View Article and Find Full Text PDF

Background: Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.

View Article and Find Full Text PDF

Polymer solution injection has emerged as a promising method for the remediation of NAPL (non-aqueous phase liquids)-contaminated aquifers. This technique enhances recovery efficiency by modifying viscous forces, stabilizing the displacement front, and minimizing channeling effects. However, there remains a significant gap in understanding the behavior of polymer solutions, particularly those with different molecular weights (MW), for mobilizing DNAPL (dense non-aqueous phase liquids) trapped in heterogeneous aquifers, especially within low-permeability layers.

View Article and Find Full Text PDF

Driving performance can be significantly impacted when a person experiences intense emotions behind the wheel. Research shows that emotions such as anger, sadness, agitation, and joy can increase the risk of traffic accidents. This study introduces a methodology to recognize four specific emotions using an intelligent model that processes and analyzes signals from motor activity and driver behavior, which are generated by interactions with basic driving elements, along with facial geometry images captured during emotion induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!