A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

S9, a 19 S proteasome subunit interacting with ubiquitinated NF-kappaB2/p100. | LitMetric

S9, a 19 S proteasome subunit interacting with ubiquitinated NF-kappaB2/p100.

J Biol Chem

Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.

Published: October 2002

Proteasome-mediated processing of the nfkappab2 gene product p100 is a regulated event that generates the NF-kappaB subunit p52. This event can be induced through p100 phosphorylation by a signaling pathway involving the nuclear factor-kappaB-inducing kinase (NIK). The C-terminal region of p100, which contains its phosphorylation site and a death domain, plays a pivotal role in regulating the processing of p100. To understand the biochemical mechanism of p100 processing, we searched for cellular factors interacting with the C-terminal regulatory region of p100 using the yeast two-hybrid system. This led to the identification of S9, a non-ATPase subunit of the 19 S proteasome with no known functions. Interestingly, the S9/p100 interaction could be induced by NIK but not by a catalytically inactive NIK mutant. This inducible molecular interaction required p100 ubiquitination and was dependent on the intact death domain. We further demonstrated that the death domain is essential for NIK-induced post-translational processing of p100, thus providing a functional link between the S9 binding and the processing of p100. Finally, we provide genetic evidence for the essential role of S9 in the inducible processing of p100.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M205330200DOI Listing

Publication Analysis

Top Keywords

processing p100
16
death domain
12
p100
10
p100 phosphorylation
8
region p100
8
processing
6
proteasome subunit
4
subunit interacting
4
interacting ubiquitinated
4
ubiquitinated nf-kappab2/p100
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!