Fetal malnutrition is now proposed as a risk factor of later obesity and type II diabetes. We previously analyzed the long-term impact of reduced protein and/or energy intake strictly limited to the last week of pregnancy in Wistar rats. Three protocols of gestational malnutrition were used: 1) low-protein isocaloric diet (5 instead of 15%) with pair feeding to the mothers receiving the control diet, 2) restricted diet (50% of control diet), and 3) low protein-restricted diet (50% of low-protein diet). Only isolated protein restriction induced a long-term beta-cell mass decrease. In the present study, we used the same protocols of food restriction to analyze their short-term impact (on day 21.5 of pregnancy) on beta-cell mass development. A 50% beta-cell mass decrease was present in the three restricted groups, but low-protein diet, either associated or not to energy restriction, increased fetal beta-cell insulin content. Among all the parameters analyzed to further explain our results, we found that the fetal plasma level of taurine was lowered by low-protein diet and was the main predictor of the fetal plasma insulin level (r = 0.63, P < 0.01). In conclusion, rat fetuses exposed to protein and/or energy restriction during the third part of pregnancy have a similar dramatic decrease in beta-cell mass, and their ability to recover beta-cell mass development retardation depends on the type of malnutrition used. Moreover, our results support the hypothesis that taurine might play an important role in fetal beta-cell mass function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00037.2002 | DOI Listing |
PLoS One
January 2025
School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.
View Article and Find Full Text PDFChem Biodivers
January 2025
Vietnam National University Hanoi, VNU University of Science, 19 Le Thanh Tong, Hoankiem, VIET NAM.
The current study first describes the chemical profiles of essential oils from Vietnamese Chromolaena odorata fresh stem barks and leaves. The gas chromatography-flame inonization detection/mass spectrometry (GC-FID/MS) analysis revealed that α-pinene (6.97-38.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
The M-Lab, Department of Precision Medicine, GROW-Research Institute for Oncology and Reproduction, Maastricht University, 6200MD Maastricht, The Netherlands.
Background/aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!