The complex mer-[Co(III)(L(1)Npy)(2)](+) (1') where the L(1)Npy(-) is the tridentate 3-[(2-pyridyl)methylimino]butan-2-one oximate ligand, gives alkyl-cobalt derivatives after reduction with NaBH(4)/Pd(2+) to the Co(I) and alkylation. The formation of the cobalt-carbon bond is accompanied by the reduction to the amino form of one or both imino ligands (depending on the experimental conditions) initially present in 1'. In one series of experiments, complexes of the type fac-[RCo(III)(L(1)Npy)(H-L(1)NHpy)](+) (R = Me, i-Pr, CH(2)Cl, CH(2)Br, CH(2)CF(3), and Bz) were obtained, in which only one of the two ligands was reduced to the amino form (H-L(1)NHpy). The saturation of one azomethine group causes the products to assume a fac configuration and induces the formation of one asymmetric carbon and one asymmetric nitrogen center in the chelating system. When an excess of reducing agent is used, both azomethine groups may be saturated, causing the introduction of one pair of chiral carbons and one pair of chiral nitrogens. Two isomers of the methyl derivative [MeCo(III)(L(1)NHpy)(H-L(1)NHpy)](+) were isolated. The X-ray analysis reveals that these isomers differ from one another in configuration of the C and N chiral centers. Possible reaction mechanisms leading to these different types of complexes are proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic025534a | DOI Listing |
Molecules
January 2025
Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
Members of the genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied species collected from various locations in western North America. The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods, including enantioselective gas chromatography.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, 163 Xianlin Avenu, 210023, Nanjing, CHINA.
Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.
View Article and Find Full Text PDFNat Mater
January 2025
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, China.
Nat Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
Two or more catalysts conducting multistep reactions in the same reactor, concurrent tandem catalysis, could enable (bio)pharmaceutical and fine chemical manufacturing to become much more sustainable. Herein we report that co-immobilization of metal nanoparticles and a biocatalytic system within a synthetic covalent organic framework capsule, COFcap-2, functions like an artificial cell in that, whereas the catalysts are trapped within 300-400 nm cavities, substrates/products can ingress/egress through ca. 2 nm windows.
View Article and Find Full Text PDFInorg Chem
January 2025
Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States.
Ionic liquids were used as low temperature solvents for the synthesis of new lanthanide and transuranic-element (TRU) borate cluster structures. Ionothermal synthesis with the ionic liquid [BMIm]Cl (1-butyl-3-methylimidazolium chloride) yielded the La, Nd, and Am containing phases LaBOCl, NdBOCl, and AmBOCl. The structures of the La, Nd, and Am borate clusters were determined by single crystal X-ray diffraction (SCXRD) and found to be cubic, in the chiral space group 23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!