Spermatogonial metaphase chromosomes were examined in two dragonfly species, Somatochlora metallica (Cordulidae) and Aeshna grandis (Aeshnidae), and the behaviour of male meiotic chromosomes was studied in S. metallica. Both in S. metallica and A. grandis the male mitotic metaphase chromosomes from cells treated with colchicine consisted of two equidistantly aligned chromatids, showing no primary constriction. In meiosis the chromosomes of S. metallica males showed telokinetic activity during the first meiotic division, and kinetic activity was restricted in the middle parts of chromosomes during the second division. The kinetic behaviour of the chromosomes both in mitosis and meiosis showed that they were holocentric. One chiasma arises interstitially in each bivalent in S. metallica male meiosis. The chiasmata retain their interstitial position at metaphase I and do not terminalize. At metaphase I bivalents co-orient with homologous telomere regions towards the opposite poles. Thus genuine dyads segregate at the first anaphase. Meiosis in these male dragonflies is thus pre-reductional or conventional, not post-reductional or inverted, as has been previously proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1601-5223.2002.1360102.xDOI Listing

Publication Analysis

Top Keywords

meiotic chromosomes
8
somatochlora metallica
8
metallica cordulidae
8
metaphase chromosomes
8
division kinetic
8
chromosomes
7
metallica
6
meiosis
5
mitotic meiotic
4
chromosomes somatochlora
4

Similar Publications

The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.

View Article and Find Full Text PDF

4D live tracing reveals distinct movement trajectories of meiotic chromosomes.

Life Med

December 2024

Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.

Proper chromosome alignment at the spindle equator is a prerequisite for accurate chromosome segregation during cell division. However, the chromosome movement trajectories prior to alignment remain elusive. Here, we established a 4D imaging analysis framework to visualize chromosome dynamics and develop a deep-learning model for chromosome movement trajectory classification.

View Article and Find Full Text PDF

Non-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.

View Article and Find Full Text PDF

The Observation of Meiotic Union Behavior of Gametophytes Provides a New Basis for Ploidy of .

Animals (Basel)

January 2025

Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, PRC, Dalian Ocean University, Dalian 116023, China.

As an important aquaculture fish, the genus Carassius exhibits different ploidy, including tetraploids and hexaploids [...

View Article and Find Full Text PDF

The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!