Ro 63-1908, 1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol, is a novel subtype-selective N-methyl-D-aspartate (NMDA) antagonist that has been characterized in vitro and in vivo. Ro 63-1908 inhibited [(3)H]dizocilpine ((3)H-MK-801) binding in a biphasic manner with IC(50) values of 0.002 and 97 microM for the high- and low-affinity sites, respectively. Ro 63-1908 selectively blocked recombinant receptors expressed in Xenopus oocytes containing NR1C + NR2B subunits with an IC(50) of 0.003 microM and those containing NR1C + NR2A subunits with an IC(50) of >100 microM, thus demonstrating greater than 20,000-fold selectivity for the recombinant receptors expressing NR1C + NR2B. Ro 63-1908 blocked these NMDA NR2B-subtype receptors in an activity-dependent manner. Ro 63-1908 was neuroprotective against glutamate-induced toxicity and against oxygen/glucose deprivation-induced toxicity in vitro with IC(50) values of 0.68 and 0.06 microM, respectively. Thus, the in vitro pharmacological characterization demonstrated that Ro 63-1908 was a potent and highly selective antagonist of the NR2B subtype of NMDA receptors. Ro 63-1908 was active against sound-induced seizures (ED(50) = 4.5 mg/kg i.p. when administered 30 min beforehand) in DBA/2 mice. The dose required to give a full anticonvulsant effect did not produce a deficit in the Rotarod test. NMDA-induced seizures were also inhibited by Ro 63-1908 with an ED(50) of 2.31 mg/kg i.v. when administered 15 min before testing. Ro 63-1908 gave a dose-related neuroprotective effect against cortical damage in a model of permanent focal ischemia. Maximum protection of 39% was seen at a plasma concentration of 450 ng/ml. There were, however, no adverse cardiovascular or CNS side-effects seen at this dosing level.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.102.034322DOI Listing

Publication Analysis

Top Keywords

63-1908
10
pharmacological characterization
8
63-1908 1-[2-4-hydroxy-phenoxy-ethyl]-4-4-methyl-benzyl-piperidin-4-ol
8
1-[2-4-hydroxy-phenoxy-ethyl]-4-4-methyl-benzyl-piperidin-4-ol novel
8
novel subtype-selective
8
subtype-selective n-methyl-d-aspartate
8
ic50 values
8
recombinant receptors
8
nr1c nr2b
8
subunits ic50
8

Similar Publications

Effects of NMDA receptor antagonists on behavioral economic indices of cocaine self-administration.

Drug Alcohol Depend

April 2022

Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA. Electronic address:

Background: Currently, there are no FDA-approved medications for the treatment of psychostimulant (e.g., cocaine) use disorders.

View Article and Find Full Text PDF

Background: Methamphetamine abuse has increased significantly in recent years. Currently, there are no FDA-approved pharmacotherapies for the treatment of methamphetamine use disorder. The goal of the current study was to determine if the N-methyl-d-aspartate (NMDA) GluN2B-selective antagonist Ro 63-1908 can block the conditioned rewarding effects of methamphetamine as assessed in conditioned place preference (CPP).

View Article and Find Full Text PDF

Rationale: Risky choice can be measured using the risky decision task (RDT). In the RDT, animals choose between a large, risky option that is paired with probabilistic foot shock and a small, safe option that is never paired with shock. To date, studies examining the neurochemical basis of decision-making in the RDT have focused primarily on the dopaminergic system but have not focused on the glutamatergic system, which has been implicated in risky decision-making.

View Article and Find Full Text PDF

The contribution of the GluN2B subunit of the NMDA receptor to impulsivity has recently been examined. Ro 63-1908, a highly selective antagonist for the GluN2B, decreases impulsive choice. Because the order in which delays are presented modulates drug effects in discounting procedures, one goal of the current study was to determine the effects of Ro 63-1908 in delay discounting procedures in which the delays to obtaining the large reinforcer either increase or decrease across the session.

View Article and Find Full Text PDF

Previous studies demonstrated that NMDA receptor antagonists such as dizocilpine (MK801) and the GluN2B NMDA antagonist Ro 63-1908 promote impulsive action (motor impulsivity). The effects of these treatments on impulsive choice and decision-making is less well characterized. Two experiments were undertaken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!