Recombinant vaccine strains of Salmonella enterica serovar Typhi capable of expressing Helicobacter pylori urease were generated by transforming strains CVD908 and CVD908-htrA with a plasmid harboring the ureAB genes under the control of an in vivo-inducible promoter. The plasmid did not interfere with the ability of either strain to replicate and persist in human monocytic cells or with their transient colonization of mouse lungs. When administered to mice intranasally, both recombinant strains elicited antiurease immune responses skewed towards a Th1 phenotype. Vaccinated mice exhibited strong immunoglobulin G2a (IgG2a)-biased antiurease antibody responses as well as splenocyte populations capable of proliferation and gamma interferon (IFNgamma) secretion in response to urease stimulation. Boosting of mice with subcutaneous injection of urease plus alum enhanced immune responses and led them to a more balanced Th1/Th2 phenotype. Following parenteral boost, IgG1 and IgG2a antiurease antibody titers were raised significantly, and strong urease-specific splenocyte proliferative responses, accompanied by IFNgamma as well as interleukin-4 (IL-4), IL-5, and IL-10 secretion, were detected. Neither immunization with urease-expressing S. enterica serovar Typhi alone nor immunization with urease plus alum alone conferred protection against challenge with a mouse-adapted strain of H. pylori; however, a vaccination protocol combining both immunization regimens was protective. This is the first report of effective vaccination against H. pylori with a combined mucosal prime-parenteral boost regimen in which serovar Typhi vaccine strains are used as antigen carriers. The significance of these findings with regard to development of a human vaccine against H. pylori and modulation of immune responses by heterologous prime-boost immunization regimens is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC128259 | PMC |
http://dx.doi.org/10.1128/IAI.70.9.5096-5106.2002 | DOI Listing |
J Infect Dis
December 2024
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
Background: Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A in addition to gastroenteritis and invasive disease, predominantly attributable to nontyphoidal Salmonella serovars Typhimurium and Enteritidis, are major causes of death and disability across the globe. A broad-spectrum vaccine that protects against disease caused by typhoidal and nontyphoidal serovars of Salmonella is not available for humans but would prevent a considerable burden of disease worldwide.
Methods: We previously developed a broad-spectrum vaccine for Gram-negative bacteria that is based on the inner core domain of detoxified Escherichia coli O111, Rc (J5) mutant lipooligosaccharide, a highly conserved antigen across Gram-negative bacteria, complexed with an outer membrane protein of group B Neisseria meningitidis.
Microb Pathog
December 2024
Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, China. Electronic address:
The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.
View Article and Find Full Text PDFJ Bacteriol
December 2024
Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.
Unlabelled: The ability to treat infections is threatened by the rapid emergence of antibiotic resistance among pathogenic microbes. Therefore, new antimicrobials are needed. Here we evaluate mannitol-1-phosphate 5-dehydrogenase (MtlD) as a potential new drug target.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. Electronic address:
In the current study, we presented the genome sequence and taxonomic classification of the new extensively drug-resistant (XDR) Salmonella enterica serovar Typhi strain JRCGR-ST-AK02. Its genome size was found to be 4,780,534 bp, containing 4864 genes. Taxonomic classification was performed based on the Average Nucleotide Identity (ANI), Genome-to-Genome Distance Calculator (GGDC) and Average Amino Acid Identity (AAI) analysis.
View Article and Find Full Text PDFJ Trop Med
December 2024
Department of Biochemistry, University of Dschang, Dschang, Cameroon.
Enteric fever is a significant health problem in developing countries caused by serovars Typhi and Paratyphi. Unfortunately, the burden of the disease remains high not only because of the complications related to the disease but also, especially, because of the spread of the strains of resistant to antibiotics. The aim of the present study was to evaluate the antibiotic resistance patterns of Typhi and Paratyphi clinical isolates as well as the risk factors associated with infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!