Regional changes in ventilation and perfusion occurring in the early hours after smoke inhalation injury were evaluated through the use of positron emission tomography. Five lambs were imaged before and 1, 2, and 4 h after receiving 100 breaths of cotton smoke. Utilizing a recently developed model of (13)N tracer kinetics (3), we evaluated changes in ventilation, perfusion, shunt, and regional gas content in nondependent, middle, and dependent lung zones. The data demonstrated a progressive development of regional shunt in dependent (dorsal) regions in which perfusion remained the highest throughout the study. These findings, together with decreasing regional ventilation and fractional gas content in the dependent regions, correlated with decreasing arterial Pa(O(2)) values over the course of the study. A negative correlation between regional shunt fraction and regional gas content in dependent and middle regions suggests that shunt was caused by progressive alveolar derecruitment or flooding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00911.2001 | DOI Listing |
PLoS One
January 2025
Transfers, Interfaces and Processes, Université libre de Bruxelles, Brussels, Belgium.
In this paper, we present a new computational framework for the simulation of airway resistance, the fraction of exhaled nitric oxide, and the diffusion capacity for nitric oxide in healthy and unhealthy lungs. Our approach is firstly based on a realistic representation of the geometry of healthy lungs as a function of body mass, which compares well with data from the literature, particularly in terms of lung volume and alveolar surface area. The original way in which this geometry is created, including an individual definition of the airways in the first seven generations of the lungs, makes it possible to consider the heterogeneous nature of the lungs in terms of perfusion and ventilation.
View Article and Find Full Text PDFAnesthesiology
January 2025
Department of Critical Care, Melbourne Medicine School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
Background: Multi-compartment computer models of heterogeneity in alveolar ventilation-perfusion ratios (VA/Q scatter) across the lung explain the significant alveolar-arterial (A-a) partial pressure gradients and associated alveolar dead-space fractions (VDA/VA) seen in anesthetized patients for both carbon dioxide and for anesthetic gases of different blood solubilities. However, the accuracy of a simpler two-compartment model of VA/Q scatter to do this has not been tested or compared to calculations from the traditional Riley model with "ideal", unventilated (shunt) and unperfused (deadspace) compartments.
Methods: Measurements of gas partial pressures in inspired and expired gas and arterial and mixed venous blood from 29 patients undergoing inhalational general anesthesia for cardiac surgery was used to compare the accuracy of two simple models of VA/Q scatter and lung gas exchange in predicting measured alveolar and arterial partial pressure differences, and associated alveolar dead-space calculations for the modern anesthetic gases isoflurane, sevoflurane and desflurane.
Intensive Crit Care Nurs
January 2025
Department of Intensive Care Medicine, Hospital Universitario de La Princesa, Madrid, Spain; Centro de investigación en red CIBERES de enfermedades respiratorias, Instituto de Salud, Carlos III, Madrid, Spain. Electronic address:
Objectives: To analyse the effects on respiratory function, lung volume and the regional distribution of ventilation and perfusion of routine postural repositioning in mechanically ventilated critically ill patients.
Methods: Prospective descriptive physiological study. We evaluated gas-exchange, lung mechanics, and Electrical Impedance Tomography (EIT) determined end-expiratory lung impedance and regional ventilation and perfusion distribution in five body positions: supine-baseline (S1); first lateralisation at 30° (L1); second supine position (S2), second contralateral lateralisation (L2) and third final supine position (S3).
Eur Radiol
January 2025
Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
Objectives: To conduct a meta-analysis of the diagnostic performance of non-contrast magnetic resonance pulmonary angiography (NC-MRPA) and ventilation-perfusion (V/Q) scintigraphy for the detection of acute pulmonary embolism (PE).
Materials And Methods: Systematic searches of electronic databases were conducted from 2000 to 2024. Primary outcomes were per-patient sensitivity and specificity of NC-MRPA and V/Q scintigraphy.
Radiol Clin North Am
March 2025
Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA. Electronic address:
Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!