Effect of surface tension on alveolar surface area.

J Appl Physiol (1985)

Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Massachusetts 02115, USA.

Published: September 2002

At fixed lung volume (VL), alterations in surface tension change alveolar surface area (S) and lung recoil (PL). Wilson (26), using data from fixed lungs (1, 9), quantified the isovolume change in S with PL. We reexamined this question in fresh excised rabbit lungs, with two important differences. First, we measured fractional changes in S by using diffuse light scattering, avoiding the potential upset of the balance of tissue and surface forces during fixation. Second, we altered surface tension by ventilating the lungs with nebulized polydimethylsiloxane, with much less residual fluid compared with lavage. We found that S decreased at low and mid VL (treatment surface tension > control) by about half of Wilson's estimates and was nearly unaffected by treatment at high VL. This suggests that with increased surface tension there is 1) greater septal retraction in lungs fixed by vascular perfusion compared with unfixed lungs and 2) a greater increase in PL and less loss of S than would have been predicted.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00126.2001DOI Listing

Publication Analysis

Top Keywords

surface tension
20
surface
8
alveolar surface
8
surface area
8
lungs
5
tension alveolar
4
area fixed
4
fixed lung
4
lung volume
4
volume alterations
4

Similar Publications

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Enabling Fast AI-Driven Inverse Design of a Multifunctional Nanosurface by Parallel Evolution Strategies.

Nanomaterials (Basel)

December 2024

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties.

View Article and Find Full Text PDF

Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

Preparation and characterization of the octenyl succinic anhydride (OSA) modified sphingan WL gum as novel biopolymeric surfactants.

Int J Biol Macromol

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China. Electronic address:

Combining polymer and surfactant in one agent namely polymeric surfactants with both high viscosity and surface activity has become a viable alternative for the traditional enhanced oil recovery (EOR) processes. With the purpose of developing new polymeric surfactants, the biopolymer flooding agent sphingan WL gum was modified by octenyl succinic anhydride (OSA) through the esterification reaction. The effects of molecular weight (MW) of WL and the OSA: WL ratio on the properties of the products were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!