Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An experimental simulation environment suitable for exploring the neuroinflammatory hypothesis of Alzheimer's disease (AD) has been developed. Using scientific literature, we have calculated parameters and rates and constructed an interactive model system. The simulation can be manipulated to explore competing hypotheses about AD pathology, i.e. can be used as an experimental "in silico" system. In this paper, we outline the assumptions and aspects of the model, and illustrate qualitative and quantitative findings. The interactions of amyloid beta deposits, glial cell dynamics, inflammation and secreted cytokines, and the stress, recovery, and death of neuronal tissue are investigated. The model leads to qualitative insights about relative roles of the cells and chemicals in the disease pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jtbi.2002.2540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!