Restenosis after angioplasty occurs in 30-40% of the treated patients. To develop a strategy to deliver drugs to restenotic lesions, we selected phages that bind to proliferating vascular smooth muscle cells (VSMC), from a random constraint 15-mer peptide phage display library. Phages were selected for binding to cultured primary aortic VSMC (in vitro biopanning) and selected for binding to denudated carotid arteries in mice (in vivo biopanning). In vitro biopanning did not result in a consensus sequence, but recurring FLGW and LASR amino acid motifs were identified. In vivo biopanning resulted in two consensus peptides 5G6 (CNIWGVVLSWIGVFPEC) and 5E5 (CESLWGGLMWTIGLSDC). Surprisingly, these two sequences were recovered after both in vitro and in vivo biopanning, but predominantly in vivo. Moreover, a strong recurring motif, IGR, was identified in the in vivo clones. The consensus phages 5G6 and 5E5 bind selectively to VSMC compared to other cell types. Furthermore, they bind preferentially to proliferating VSMC compared to VSMC that were growth arrested, and are effectively internalized by their target cells. The specific binding capacities of 5G6 and 5E5 phages suggest that these peptide sequences can be used for targeting of restenotic lesions, in which proliferating VSMC are the dominant cell type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4889(02)00254-9 | DOI Listing |
PLoS Pathog
January 2025
Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, United States of America.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2.
View Article and Find Full Text PDFRSC Adv
January 2025
University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold.
View Article and Find Full Text PDFCancer Biother Radiopharm
December 2024
Department of Obstetrics and Gynecology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
Vascular endothelial growth factor receptor-3 (VEGFR-3) plays an indispensable role in lymphangiogenesis. Previous findings suggest that blocking the VEGFR-3 signaling pathway can inhibit lymph node metastasis effectively, thus reducing the incidence of distant metastasis. The development of new VEGFR-3-targeting drugs for early detection and effective treatments is, therefore, urgently required.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2025
Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, India.
Pharmaceuticals (Basel)
October 2024
Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01-Guamá, Belém 66075-750, PA, Brazil.
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!