Expression of voltage-dependent calcium channel subunits in the rat retina.

Neurosci Lett

Institute of Neurobiology, Fudan University, Shanghai 200433, PR China.

Published: September 2002

The expression patterns of different Ca(2+) channel alpha(1) subunits (alpha(1A-E)) were immunohistochemically studied in the rat retina. Intense immunoreactivity (IR) for alpha(1A) (P/Q-type) and alpha(1B) (N-type) Ca(2+) channels was observed in both the outer and inner plexiform layers (OPL and IPL). In addition, alpha(1B)-IR was found in the outer and inner nuclear layers. Staining for alpha(1E) (R-type) was diffusely distributed in all three nuclear layers and in the IPL. The alpha(1C) and alpha(1D), two L-type Ca(2+) channel subunits, exhibited distinct expression patterns, with alpha(1C) being almost exclusively expressed on bipolar cells, and alpha(1D) mainly on photoreceptor cell bodies and in the OPL. Staining for alpha(1D) was also observed on Müller cells. The differential expression pattern of the alpha(1) subunits suggests that these Ca(2+) channel subtypes may be associated with different retinal functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3940(02)00688-2DOI Listing

Publication Analysis

Top Keywords

ca2+ channel
12
channel subunits
8
rat retina
8
expression patterns
8
alpha1 subunits
8
outer inner
8
nuclear layers
8
expression
4
expression voltage-dependent
4
voltage-dependent calcium
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

The inhibition of SLC8A1 promotes Ca-dependent cell death in Gastric Cancer.

Biomed Pharmacother

December 2024

Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.

Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.

View Article and Find Full Text PDF

Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.

Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown.

View Article and Find Full Text PDF

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!