The present study used autoradiography to examine the effect of prenatal morphine exposure on mu-opioid receptor density in epileptic seizure-controlling brain structures including the substantia nigra pars compacta (SNC), substantia nigra pars reticulata (SNR), superior colliculus (SC), and subthalamic nucleus (STN) of adult male and female rats. The results demonstrate that prenatal morphine exposure increases the mu-opioid receptor density in the SNC and STN, but not in the SNR or in the SC of gonadally intact adult male rats. The density of mu-opioid receptors in the SNC and STN is, however, decreased following gonadectomy in morphine-exposed males, and testosterone treatment fails to restore this decrease to the level of gonadally intact males. Further, in the SC, the density of mu receptors was lower in both saline-exposed, gonadectomized (GNX) and GNX, TP-treated males and in morphine-exposed, GNX, TP-treated males relative to gonadally intact saline- and morphine-exposed males, respectively. In ovariectomized (OVX) female rats, the same prenatal morphine exposure increases the mu-opioid receptor density in the SNC and SNR, but decreases it in the STN. The density of mu-opioid receptors is also decreased in the SNC and SC of OVX estrogen-treated females and in the SNR and SC of OVX, progesterone-treated females. Thus, the present study demonstrates that mu-opioid receptors in seizure-controlling brain structures are sex-specifically altered by prenatal morphine exposure in adult progeny. Further, prenatal morphine exposure alters gonadal hormone effects on the density of mu receptors in adult, OVX females.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0361-9230(02)00805-5DOI Listing

Publication Analysis

Top Keywords

prenatal morphine
24
morphine exposure
24
mu-opioid receptors
16
seizure-controlling brain
12
brain structures
12
mu-opioid receptor
12
receptor density
12
gonadally intact
12
receptors seizure-controlling
8
altered prenatal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!