Pituitary adenylate cyclase activating polypeptide (PACAP) modulates neurotransmission in the central and peripheral nervous systems. In vitro and in vivo studies have shown the protective effects of PACAP against neuronal damage induced by ischemia and agonists of NMDA-type glutamate receptors. Here, we demonstrated that PACAP also protected against neuronal toxicity induced by beta-amyloid (Abeta) peptide, aggregation of which is a causative factor for Alzheimer's disease. PACAP (10(-9)M) rescued 80% of decreased cell viability and 50% of elevated caspase-3 activity that resulted from exposure of PC12 cells to Abeta. PACAP was at least 10(4)-fold more effective than other neuropeptides including vasoactive intestinal peptide (VIP) and humanin, which correlated with the level of cAMP accumulation. Thus, our results suggested that PACAP attenuates Abeta-induced cell death in PC12 cells through an increase in cAMP and that caspase-3 deactivation by PACAP is involved in the signaling pathway for this neuroprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0196-9781(02)00085-2DOI Listing

Publication Analysis

Top Keywords

pc12 cells
12
pacap attenuates
8
pacap
7
neuropeptide pacap
4
attenuates beta-amyloid
4
beta-amyloid 1-42-induced
4
1-42-induced toxicity
4
toxicity pc12
4
cells pituitary
4
pituitary adenylate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!