An efficient asymmetric synthesis of 1,2,3-trisubstituted cyclopentanes and cyclohexanes is described. Three methods were developed for the preparation of the 2,3-disubstituted cyclopentenones and cyclohexenones, which are key achiral building blocks. These intermediates are reduced catalytically with (R)-2-methyloxazaborolidine in high yield (82-98%) and excellent ee (89-96%). Directed reduction of the chiral allylic alcohols using Red-Al gives exclusively the 1,2-anti stereochemistry (>99:1). Epimerization of the ester center followed by saponification/crystallization affords the desired hydroxyacids in good yield (65-70%) and in high enantiomeric excess (>99%).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo025883mDOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
8
synthesis 123-trisubstituted
8
123-trisubstituted cyclopentanes
8
cyclopentanes cyclohexanes
8
cyclohexanes key
4
key components
4
components substance
4
substance antagonists
4
antagonists efficient
4
efficient asymmetric
4

Similar Publications

Strategies for combining ionic and non-ionic functional groups are important for altering detergent properties and exploring new chemical spaces within the detergentome. Previous synthesis protocols for ionic/non-ionic hybrid detergents require asymmetric detergent precursors with independently addressable hydroxyl groups that can be decorated with charged groups. However, preparation of ionic/non-ionic headgroups can be tedious in terms of required synthesis steps and resource consumption.

View Article and Find Full Text PDF

Dual-Asymmetric Solid Additive Enables Eco-friendly All-Polymer Solar Cells with Over 19% Efficiency and Excellent Stability.

Angew Chem Int Ed Engl

January 2025

Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.

The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).

View Article and Find Full Text PDF

PRMT1-methylated MSX1 phase separates to control palate development.

Nat Commun

January 2025

State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.

Little is known about the regulation and function of phase separation in craniofacial developmental disorders. MSX1 mutations are associated with human cleft palate, the most common craniofacial birth defect. Here, we show that MSX1 phase separation is a vertebrate-conserved mechanism underlying embryonic palatal fusion.

View Article and Find Full Text PDF

Enantioselective Heck/Tsuji-Trost reaction of flexible vinylic halides with 1,3-dienes.

Nat Commun

January 2025

College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.

The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.

View Article and Find Full Text PDF

Transcription factors and genome biases in polyploid crops.

Adv Protein Chem Struct Biol

January 2025

National Agri-Food Biotechnology Institute, Knowledge City, Mohali, Punjab, India. Electronic address:

Nuclear protein transcription factors (TFs) regulate all biological processes in plants and are necessary for gene regulation. The transcription of genes during plant growth and development and their response to environmental cues are regulated by TF binding to specific promoter regions in the genomic DNA. Polyploid plants with several sets of chromosomes frequently display intricate genomic biases concerning TF expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!