The fulleride dianions C(60)(2-) and C(70)(2-) were generated by deprotonation of the corresponding hydrogenated fullerenes, 1,2-C(60)H(2) and 1,2-C(70)H(2). These anions were prepared in the presence of a variety of alkylating agents, and mono- or dialkylated products were obtained. Alkylation was not successful with sulfonate ester alkylating agents. Deprotonation of monoalkylated compounds, followed by second alkylation with a different alkylating agent, produced heterodialkylated compounds. The monoalkyated material was invariably the 1,2-isomers, while the dialkylated materials were generally 1,4-isomers, although some 1,2-isomer was observed in the C(70) context. The major product from alkylation of C(70)(2-) was the 7,23-isomer 13a, a structure where the alkylation took place near the equator of the fullerene cage, rather than at the more strained carbons near the poles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo020216e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!