AI Article Synopsis

  • Recent research challenges the idea that old-growth forests are at a steady state, revealing that Amazon forests are increasing in carbon and biomass due to higher atmospheric CO2 levels.
  • There is a significant rise in woody climbing plants, or lianas, which have been increasing in size and density over the last two decades.
  • The growth of lianas threatens tree health and survival, suggesting that the carbon storage potential of these forests may decline sooner than previously expected, necessitating updates to carbon flux predictions.

Article Abstract

Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7-4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature00926DOI Listing

Publication Analysis

Top Keywords

dominance large
8
large lianas
8
old-growth forests
8
forests
6
carbon
5
increasing dominance
4
lianas
4
lianas amazonian
4
amazonian forests
4
forests ecological
4

Similar Publications

Accurately estimating forest carbon sink and exploring their climate-driven mechanisms are critical to achieving carbon neutrality and sustainable development. Fewer studies have used machine learning-based dynamic models to estimate forest carbon sink. The climate-driven mechanisms in Shangri-La have yet to be explored.

View Article and Find Full Text PDF

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

Description of changes in chemical bonding along the pathways of chemical reactions by deformation of the molecular electrostatic potential.

J Mol Model

January 2025

Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.

Context: The analysis of the changes in the electronic structure along intrinsic reaction coordinate (IRC) paths for model reactions: (i) ethylene + butadiene cycloaddition, (ii) prototype SN2 reaction Cl + CH3Cl, (iii) HCN/CNH isomerization assisted by water, (iv) CO + HF → C(O)HF was performed, in terms of changes in the deformation density (Δr) and the deformation of MEP (ΔMEP). The main goal was to further examine the utility of the ΔMEP as a descriptor of chemical bonding, and to compare the pictures resulting from Δr and ΔMEP. Both approaches clearly show that the main changes in the electronic structure occur in the TS region.

View Article and Find Full Text PDF

Background: Large-scale unbiased proteomic profiling studies have identified a cluster of 31 proteins co-expressed with APP, which is termed the matrisome module 42 (M42). M42 is enriched in AD risk genes, including APOE, with mostly secreted proteins that bind heparin, collectively strongly correlate with the burden of brain pathology and cognitive trajectory, and localize to amyloid plaques in AD brain. For these reasons, M42 has been nominated as a novel therapeutic target for enabling drug discovery by our TREAT-AD Center.

View Article and Find Full Text PDF

Background: The sortilin-related receptor 1 protein, SORL1, interacts with retromer to regulate trafficking of cargo out of the early endosome. Genetic variants in SORL1 that lead to a premature protein truncation (PTVs) are observed almost exclusively in Alzheimer's disease (AD) patients, suggesting SORL1's haploinsufficiency may be causal for AD. However, the large majority of SORL1 variants are rare missense variants which affect diverse structural domains, some of which may be causative for disease or (strongly) risk-increasing, while others are (likely) benign.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!