Correct human beta-globin mRNA has been restored in erythroid cells from transgenic mice carrying the human gene with beta-globin IVS2-654 splice mutation and from thalassemia patients with the IVS2-654/beta(E) genotype. This was accomplished in a dose- and time-dependent manner by free uptake of morpholino oligonucleotide antisense to the aberrant splice site at position 652 of intron 2 in beta-globin pre-mRNA. Under optimal conditions of oligonucleotide uptake, the maximal levels of correct human beta-globin mRNA and hemoglobin A in patients' erythroid cells were 77 and 54%, respectively. These levels of correction were equal to, if not higher than, those obtained by syringe loading of the oligonucleotide into the cells. Comparison of splicing correction results with the cellular uptake of fluorescein-labeled oligonucleotide indicated that the levels of mRNA and hemoglobin A correlate well with the nuclear localization of the oligonucleotide and the degree of erythroid differentiation of cultured cells. Similar but not as pronounced results were obtained after the oligonucleotide treatment of bone marrow cells from IVS2-654 mouse. The effectiveness of the free antisense morpholino oligonucleotide in restoration of correct splicing of IVS2-654 pre-mRNA in cultured erythropoietic cells from transgenic mice and thalassemic patients suggests the applicability of this or similar compounds in in vivo experiments and possibly in treatment of thalassemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.62.3.545 | DOI Listing |
Mol Biol Rep
January 2025
Department of Zoology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.
Methods And Results: We devised a targeted NGS panel spanning an 80.
Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.
Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.
Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.
Background: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.
View Article and Find Full Text PDFPathogens
December 2024
Medical School, University of Patras, Rio, 26504 Patras, Greece.
Thalassemia is an inherited hematological disorder characterized by a decrease in the synthesis of or absence of one or more globin chains. Hepatitis E virus (HEV) is a major cause of acute viral hepatitis, constituting a major global health burden and emerging as a critical public health concern. HEV infection is mainly transmitted via the fecal-oral route; however, parenteral transmission through blood components has been reported in both developing and developed countries.
View Article and Find Full Text PDFCureus
November 2024
Community Medicine, Baba Raghav Das Medical College, Gorakhpur, IND.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!