Lysophosphatidic acid (LPA) is a potent lipid mediator with actions on many cell types. Morphological changes involving actin polymerization are mediated by at least two cognate G protein-coupled receptors, LPA(1)/EDG-2 or LPA(2)/EDG-4. Herein, we show that LPA can also induce actin depolymerization preceding actin polymerization within single TR mouse immortalized neuroblasts. Actin depolymerization resulted in immediate loss of membrane ruffling, whereas actin polymerization resulted in process retraction. Each pathway was found to be independent: depolymerization mediated by intracellular calcium mobilization, and alpha-actinin activity and polymerization mediated by the activation of the small Rho GTPase. alpha-Actinin-mediated depolymerization seems to be involved in growth cone collapse of primary neurons, indicating a physiological significance of LPA-induced actin depolymerization. Further evidence for dual regulation of actin rearrangement was found by heterologous retroviral transduction of either lpa(1) or lpa(2) in B103 cells that neither express LPA receptors nor respond to LPA, to confer both forms of LPA-induced actin rearrangements. These results suggest that diverging intracellular signals from a single type of LPA receptor could regulate actin depolymerization, as well as polymerization, within a single cell. This dual actin rearrangement may play a novel, important role in regulation of the neuronal morphology and motility during brain development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC117935PMC
http://dx.doi.org/10.1091/mbc.01-09-0465DOI Listing

Publication Analysis

Top Keywords

actin depolymerization
20
actin
12
actin rearrangement
12
actin polymerization
12
dual regulation
8
regulation actin
8
lysophosphatidic acid
8
polymerization mediated
8
polymerization single
8
lpa-induced actin
8

Similar Publications

The transmembrane glycoproteins Trop-1/EpCAM and Trop-2 independently trigger Ca and kinase signals for cell growth and tumor progression. Our findings indicated that Trop-1 and Trop-2 tightly colocalize at macroscopic, ruffle-like protrusions (RLP), that elevate from the cell perimeter, and locally recur over hundreds of seconds. These previously unrecognized elevated membrane regions ≥20 µm-long, up to 1.

View Article and Find Full Text PDF

Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.

View Article and Find Full Text PDF

The WAVE complex in developmental and adulthood brain disorders.

Exp Mol Med

January 2025

Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.

Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization.

View Article and Find Full Text PDF

The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II.

View Article and Find Full Text PDF

Regulation of actin dynamics by Twinfilin.

Curr Opin Cell Biol

January 2025

Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:

Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!