The androgen receptor interacts with multiple regions of the large subunit of general transcription factor TFIIF.

J Biol Chem

Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.

Published: October 2002

The androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male development and reproductive function. The main determinants for the transactivation function lie within the structurally distinct amino-terminal domain. Previously we identified an interaction between the AR-transactivation domain (amino acids 142-485) and the general transcription factor TFIIF (McEwan, I. J., and Gustafsson, J.-A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8485-8490). We have now mapped the binding sites for the AR-transactivation domain within the RAP74 subunit of TFIIF. Both the amino-terminal 136 amino acids and the carboxyl-terminal 155 amino acids of RAP74 interacted with the AR-transactivation domain and were able to rescue basal transcription after squelching by the AR polypeptide. Competition experiments demonstrated that the AR could interact with the holo-TFIIF protein and that the carboxyl terminus of RAP74 represented the principal receptor-binding site. Point mutations within AR-transactivation domain distinguished the binding sites for RAP74 and the p160 coactivator SRC-1a and identified a single copy of a six amino acid repeat motif as being important for RAP74 binding. These data indicate that the AR-transactivation domain can potentially make multiple protein-protein interactions with coactivators and components of the general transcriptional machinery in order to regulate target gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M205220200DOI Listing

Publication Analysis

Top Keywords

ar-transactivation domain
20
transcription factor
12
amino acids
12
androgen receptor
8
general transcription
8
factor tfiif
8
binding sites
8
domain
6
ar-transactivation
5
rap74
5

Similar Publications

The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa.

View Article and Find Full Text PDF

The androgen receptor (AR) is a modular transcription factor which functions as a master regulator of gene expression. AR protein is composed of three functional domains; the ligand-binding domain (LBD); DNA-binding domain (DBD); and the intrinsically disordered N-terminal transactivation domain (TAD). AR is transactivated upon binding to the male sex hormone testosterone and other androgens.

View Article and Find Full Text PDF

The androgen receptor (AR) is central to prostate cancer pathogenesis and has been extensively validated as a drug target. However, small-molecule anti-androgen therapies remain limited due to resistance and will eventually fail to suppress tumor growth, resulting in progression to castration-resistant prostate cancer (CRPC). The intrinsically disordered N-terminal domain (NTD) is crucial for AR transactivation and has been investigated as a suitable target in the presence of ligand binding domain mutations.

View Article and Find Full Text PDF

Targeting androgen receptor and the variants by an orally bioavailable Proteolysis Targeting Chimeras compound in castration resistant prostate cancer.

EBioMedicine

April 2023

Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan. Electronic address:

Background: Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance.

View Article and Find Full Text PDF

Exploiting Ligand-binding Domain Dimerization for Development of Novel Androgen Receptor Inhibitors.

Mol Cancer Ther

December 2022

Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium.

Currently, all clinically used androgen receptor (AR) antagonists target the AR ligand-binding pocket and inhibit T and dihydrotestosterone (DHT) binding. Resistance to these inhibitors in prostate cancer frequently involves AR-dependent mechanisms resulting in a retained AR dependence of the tumor. More effective or alternative AR inhibitors are therefore required to limit progression in these resistant stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!