Intracellular ionic strength may play an important role in regulating the expression of genes encoding osmolyte-accumulating molecules. To establish whether a strict relation exists between these variables, intracellular ionic strength (sum of Na+, Cl- and K+ concentrations) and the relative abundance of mRNA derived from various tonicity-sensitive genes was examined using electron microprobe analysis and Northern blots on primary cultures of rat papillary collecting duct (PCD) cells following acute or long-term alterations in medium tonicity. Hypertonic medium (450 mosmol kg(-1)) evoked an initial rise in intracellular ionic strength (269 +/- 5 vs. 194 +/- 7 mmol (kg wet weight (wt))(-1) in isotonic controls; means +/- S.E.M.), which subsequently declined gradually, and a significantly higher abundance of bgt1 (Na+- and Cl- -dependent betaine transporter), smit (Na+/myo-inositol cotransporter), ar (aldose reductase) and osp94 (osmotic stress protein 94) mRNAs. Conversely, exposure to hypotonic medium (200 mosmol kg(-1)) for 12 h was associated with significantly reduced intracellular ionic strength (153 +/- 4 mmol (kg wet wt)(-1)) and significantly reduced the abundance of smit and ar mRNAs. PCD cells preconditioned in hypotonic medium and re-exposed to isotonic medium showed significantly higher abundance of these mRNAs than isotonic controls, although the intracellular ionic strength did not differ. Two further tonicity-sensitive genes responded differently to medium tonicity: while the abundance of hsp70 (heat shock protein 70) mRNA increased significantly following both hypo- and hypertonic stress, inos (inducible nitric oxide synthase) mRNA abundance correlated inversely with medium tonicity. These findings support the view that the effect of intracellular ionic strength on the expression of bgt1, smit, ar and osp94 is modulated by additional factors such as cell volume, and that its effect on the pathways regulating hsp70 and inos is even more complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290481PMC
http://dx.doi.org/10.1113/jphysiol.2002.021931DOI Listing

Publication Analysis

Top Keywords

intracellular ionic
28
ionic strength
28
medium tonicity
12
strength expression
8
rat papillary
8
papillary collecting
8
collecting duct
8
tonicity-sensitive genes
8
pcd cells
8
mosmol kg-1
8

Similar Publications

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Osmotic stress influences microtubule drug response via WNK1 kinase signaling.

Drug Resist Updat

January 2025

Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; UCLM Biomedicine Unit Associated to CSIC, Spain; CSIC Conexión-Cáncer Hub, Spain. Electronic address:

Ion homeostasis is critical for numerous cellular processes, and disturbances in ionic balance underlie diverse pathological conditions, including cancer progression. Targeting ion homeostasis is even considered as a strategy to treat cancer. However, very little is known about how ion homeostasis may influence anticancer drug response.

View Article and Find Full Text PDF

Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release.

J Physiol Sci

January 2025

National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan; Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan; Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan; Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan. Electronic address:

The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC.

View Article and Find Full Text PDF

Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.

View Article and Find Full Text PDF

Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!