ADP-induced pial arteriolar dilation in ovariectomized rats involves gap junctional communication.

Am J Physiol Heart Circ Physiol

Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

Published: September 2002

It was previously shown that, despite the loss of nitric oxide (NO) dependence, ADP-induced pial arteriolar dilation was not attenuated in estrogen-depleted [i.e., ovariectomized (Ovx)] rats. Additional evidence suggested that the NO was replaced by an endothelium-dependent hyperpolarizing factor (EDHF)-like mechanism. To further characterize the nascent EDHF role in Ovx females, the current study was undertaken to test whether, in Ovx rats, ADP-induced pial arteriolar dilation retained its endothelial dependence and whether gap junctions are involved in that response. A closed cranial window and intravital microscopy system was used to monitor pial arteriolar diameter changes in anesthetized rats. The endothelial portion of the ADP-induced dilation was evaluated using light dye endothelial injury (L/D). The study was organized around three experimental approaches. First, the responses of pial arterioles to ADP before and after L/D exposure in intact and Ovx female rats were tested. L/D reduced the ADP response by 50-70% in both groups, thereby indicating that the endothelium dependence of ADP-induced vasodilation is not altered by chronic estrogen depletion. Second, the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA) and the prostanoid synthesis inhibitor indomethacin (Indo) were coapplied. In intact females, L-NNA-Indo attenuated the response to ADP by 50%, with no further changes upon the addition of L/D. On the other hand, L-NNA-Indo did not affect ADP reactivity in Ovx rats, but subsequent L/D exposure reduced the ADP response by >50%. The NO-prostanoid-independent, but endothelium-dependent, nature of the response in Ovx females is a hallmark of EDHF participation. Third, gap junctional inhibition strategies were applied. A selective inhibitor of gap junctional function, Gap 27, did not affect ADP reactivity in intact females but reduced the the ADP response by 50% in Ovx females. A similar result was obtained following application of a connexin43 antisense oligonucleotide. These findings suggest that the nascent EDHF dependency of ADP-induced pial arteriolar dilation in Ovx females involves connexin43-related gap junctional communication.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00031.2002DOI Listing

Publication Analysis

Top Keywords

pial arteriolar
20
adp-induced pial
16
arteriolar dilation
16
gap junctional
16
ovx females
16
reduced adp
12
adp response
12
junctional communication
8
dependence adp-induced
8
nascent edhf
8

Similar Publications

L-Arginine and Taurisolo Effects on Brain Hypoperfusion-Reperfusion Damage in Hypertensive Rats.

Int J Mol Sci

October 2024

Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy.

Acute and chronic hypertension causes cerebral vasculopathy, increasing the risk of ischemia and stroke. Our study aimed to compare the effects of arterial pressure reduction on the pial microvascular responses induced by hypoperfusion and reperfusion in spontaneously hypertensive Wistar rats, desamethasone-induced hypertensive Wistar rats and age-matched normotensive Wistar rats fed for 3 months with a normal diet or normal diet supplemented with L-arginine or Taurisolo or L-arginine plus Taurisolo. At the end of treatments, the rats were submitted to bilateral occlusion of common carotid arteries for 30 min and reperfusion.

View Article and Find Full Text PDF
Article Synopsis
  • Cerebrovascular autoregulation (CA) can be disrupted after acute brain injuries, and different levels of carbon dioxide (PaCO₂) influence this regulation, though the specifics are not well understood.
  • This study aimed to examine how changes in PaCO₂ affect pial vasodynamics using a porcine model, preparing for further research on cerebral blood flow (CBF) under varying PaCO₂ levels.
  • Results showed that modifying respiratory rates to adjust PaCO₂ was effective, and while there were changes in pial arteriolar diameter with PaCO₂ variations, significant vasodilation only occurred in a hypercapnic environment, indicating a non-linear relationship.
View Article and Find Full Text PDF

Background And Objectives: Pressure reactivity index (PRx) has been proposed as a metric associated with cerebrovascular autoregulatory (CA) function and has been thoroughly investigated in clinical research. In this study, PRx is validated in a porcine cranial window model, developed to visualize pial arteriolar autoregulation and its limits.

Methods: We measured arterial blood pressure, intracranial pressure, pial arteriolar diameter, and red blood cell (RBC) velocity in a closed cranial window piglet model during gradual balloon catheter-induced arterial hypotension (n = 10) or hypertension (n = 10).

View Article and Find Full Text PDF

Background: Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-β accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-β clearance, may be impaired in CAA.

View Article and Find Full Text PDF

Background And Objectives: Hydrocephalus is characterized by progressive enlargement of cerebral ventricles, resulting in impaired microvasculature and cerebral hypoperfusion. This study aimed to demonstrate the microvascular changes in hydrocephalic rats and the effects of cerebrospinal fluid (CSF) release on cerebral blood flow (CBF).

Methods: On postnatal day 21 (P21), male Wistar rats were intracisternally injected with either a kaolin suspension or saline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!