Phosphorylation of cardiac protein kinase B is regulated by palmitate.

Am J Physiol Heart Circ Physiol

Cardiovascular Research Group, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.

Published: September 2002

In this study isolated perfused working rat hearts were used to investigate the role of palmitate-regulated protein kinase B (PKB) phosphorylation on glucose metabolism. Rat hearts were perfused aerobically in working mode with 11 mM glucose and either 100 microU/ml insulin or 100 microU/ml insulin and 1.2 mM palmitate. PKB activity and phosphorylation state were reduced in the presence of 1.2 mM palmitate, which correlates with a decrease in glycolysis (47%), glucose oxidation (84%), and glucose uptake (43%). In contrast to skeletal muscle, neither p38 nor ERK underwent changes in their phosphorylation states in response to insulin or insulin and palmitate. Moreover, pharmacological restoration of glucose oxidation rates in hearts perfused with 1.2 mM palmitate demonstrated no increase in PKB phosphorylation state. In cultured mouse cardiac muscle HL-1 cells, insulin markedly increased PKB phosphorylation, which was blunted by pre- and cotreatment with 1.2 mM palmitate. However, neither palmitate nor C(2)-ceramide treatment of insulin-stimulated cells was able to accelerate PKB dephosphorylation beyond that observed following the removal of insulin alone. Taken together, these experiments show the control of PKB phosphorylation by palmitate is independent of ceramide and suggest that this signaling event may be an important regulator of myocardial glucose uptake and oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00275.2002DOI Listing

Publication Analysis

Top Keywords

pkb phosphorylation
16
protein kinase
8
palmitate
8
rat hearts
8
hearts perfused
8
100 microu/ml
8
microu/ml insulin
8
insulin palmitate
8
phosphorylation state
8
glucose oxidation
8

Similar Publications

Ischemic-anoxic injury plays an important role in the pathophysiology of diabetes retinopathy, optic neuropathy, even glaucoma and other ocular diseases. It may ultimately cause damage to neuronal death like retinal ganglion cells (RGCs) and subsequent visual loss. RGCs are essential elements of the retina and optic nerve that are crucial to visual formation.

View Article and Find Full Text PDF

BMSC Derived Exosomes Attenuate Apoptosis of Temporomandibular Joint Disc Chondrocytes in TMJOA via PI3K/AKT Pathway.

Stem Cell Rev Rep

November 2024

Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.

Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) are crucial means of intercellular communication and can regulate a range of biological processes by reducing inflammation, decreasing apoptosis and promoting tissue repair. We treated temporomandibular joint (TMJ) disc chondrocytes with TNF-α and performed local injection of sodium iodoacetate (MIA) in the TMJ of rats to establish in vitro and in vivo models of TMJ osteoarthritis (TMJOA). BMSC-Exos were isolated and extracted to evaluate their proliferation and trilineage differentiation abilities, and their antiapoptotic and chondroprotective effects were assessed.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of Protein kinase B (PKB)/AKT nitration in myocardial ischemia and reperfusion injury (MIRI) and how resveratrol (RSV) may protect heart cells during this process.
  • The researchers used mouse models and H9c2 cell lines to analyze the effects of interventions like RSV and inhibitors on AKT nitration and cardiomyocyte apoptosis caused by ischemia.
  • Results showed that AKT nitration, which leads to reduced AKT activity and increased heart cell death, was decreased, and AKT phosphorylation increased when treated with RSV and other inhibitors, indicating RSV's potential protective effects against heart damage in MIRI.
View Article and Find Full Text PDF

Peptide substrate reporters are short chains of amino acids designed to act as substrates for enzymes of interest. Combined with capillary electrophoresis and laser-induced fluorescence detection (CE-LIF), they are powerful molecular tools for quantitative measurements of enzyme activity even at the level of single cells. Although most peptide substrate reporters have been optimized for human or murine cells in health-related applications, their performance in nonmammalian organisms remains largely unexplored.

View Article and Find Full Text PDF

Background: Cerebral ischemia-reperfusion injury (CIRI) usually occurs during the treatment phase of ischemic disease, which is closely related to high morbidity and mortality. Promoting neurogenesis and synaptic plasticity are effective neural recovery strategies for CIRI. Astragaloside IV (AS-IV) has been shown to play a neuroprotective role in some neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!