A modified Lassaigne method was developed for N determination based on fusion of the organic substance with metallic Na, conversion of the cyanide in the aqueous leachate to thiocyanate by ammonium polysulfide treatment, and colorimetric measurement of the thiocyanate formed by the addition of excessive ferric ions in acidic medium. The mean molar absorptivity of the Fe(NCS)2+ complex at 480 nm is 2.96 x 10(3) L/mol x cm, enabling quantitation of 0.25-7.72 ppm N (linear range) in the final solution. The relative amounts of Na, (NH4)2S2, and Fe(III) with respect to nitrogen in the analyte were optimized. The developed method was successfully applied to the determination of N in various brands of baby food, and it was compared statistically with the conventional Kjeldahl and elemental analysis methods. Protein nitrogen in a number of meat products was also precisely determined by the developed method. Thus, the total digestion time of the conventional Kjeldahl method was reduced considerably (e.g., to approximately 15 min for a dried sample) with a relatively simple spectrophotometric method requiring no sophisticated instrumentation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

modified lassaigne
8
lassaigne method
8
meat products
8
baby food
8
developed method
8
conventional kjeldahl
8
method
6
spectrophotometric determination
4
determination organic
4
organic nitrogen
4

Similar Publications

A modified Lassaigne method was developed for N determination based on fusion of the organic substance with metallic Na, conversion of the cyanide in the aqueous leachate to thiocyanate by ammonium polysulfide treatment, and colorimetric measurement of the thiocyanate formed by the addition of excessive ferric ions in acidic medium. The mean molar absorptivity of the Fe(NCS)2+ complex at 480 nm is 2.96 x 10(3) L/mol x cm, enabling quantitation of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!