Analysis of RNA flexibility by scanning force spectroscopy.

Nucleic Acids Res

Abteilung Genetik, FB 19, Universität Kassel, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany.

Published: August 2002

Scanning force spectroscopy was used to measure the mechanical properties of double stranded RNA molecules in comparison with DNA. We find that, similar to the B-S transition in DNA, RNA molecules are stretched from the assumed A' conformation to a stretched conformation by applying a defined force (plateau force). The force depends on the G + C content of the RNA and is distinct from that required for the B-S transition of a homologous DNA molecule. After the conformational change, DNA can be further extended by a factor of 0.7 +/- 0.2 (S-factor) before melting occurs and the binding of the molecule to the cantilever is finally disrupted. For RNA, the S-factor was higher (1.0 +/- 0.2) and more variable. Experiments to measure secondary structures in single stranded RNA yielded a large number of different force-distance curves, suggesting disruption and stretching of various secondary structures. Oriented attachment of the molecules to the substrate, a defined pick-up point and an increased resolution of the instrument could provide the means to analyse RNA secondary structures by scanning force spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134254PMC
http://dx.doi.org/10.1093/nar/gnf080DOI Listing

Publication Analysis

Top Keywords

scanning force
12
force spectroscopy
12
secondary structures
12
stranded rna
8
rna molecules
8
b-s transition
8
force
6
rna
6
analysis rna
4
rna flexibility
4

Similar Publications

This study investigates the functionalization of gold-coated magnetoelastic sensors with thionine molecules, focusing on resonance frequency shifts. The functionalization process was characterized by using Raman spectroscopy and analyzed via scanning electron microscopy and atomic force microscopy, revealing the progressive formation of molecular clusters over time. Our results demonstrate that longer functionalization time leads to saturation of surface coverage and cluster formation, impacting the sensor's resonance frequency shifts.

View Article and Find Full Text PDF

Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials.

View Article and Find Full Text PDF

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

The inhibitory potential of an alcoholic extract derived from Canarium strictum leaves (CSL) was evaluated as a corrosion inhibitor for mild steel (MS) in 15% HCl solution. Furthermore, to enhance its inhibition effectiveness, the influence of potassium iodide (KI) was also examined. The corrosion inhibition and adsorption characteristics of CSL were comprehensively analysed through weight loss measurement, electrochemical impedance measurement (EIS), potentiodynamic polarization (PP), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS).

View Article and Find Full Text PDF

In recent years, studies of surfaces at more realistic conditions has advanced significantly, leading to an increased understanding of surface dynamics under reaction conditions. The development has mainly been due to the development of new experimental techniques or new experimental approaches. Techniques such as High Pressure Scanning Tunneling/Force Microscopy (HPSTM/HPAFM), Ambient Pressure X-ray Photo emission Spectroscopy (APXPS), Surface X-Ray Diffraction (SXRD), Polarization-Modulation InfraRed Reflection Absorption Spectroscopy (PMIRRAS) and Planar Laser Induced Fluorescence (PLIF) at semi-realistic conditions has been used to study planar model catalysts or industrial materials under operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!