AI Article Synopsis

Article Abstract

Purpose: Motexafin gadolinium is a redox mediator that selectively targets tumor cells, is detectable by magnetic resonance imaging (MRI), and enhances the effect of radiation therapy. This lead-in phase to a randomized trial served to evaluate radiologic, neurocognitive, and neurologic progression end points and to evaluate the safety and radiologic response of motexafin gadolinium administered concurrently with 30 Gy in 10-fraction whole-brain radiation therapy for the treatment of brain metastases.

Patients And Methods: Motexafin gadolinium (5.0 mg/kg/d for 10 days) was administered before each radiation treatment in this prospective international trial. Patients were evaluated by MRI, neurologic examinations, and neurocognitive tests. Prospective criteria and centralized review procedures were established for radiologic, neurocognitive, and neurologic progression end points.

Results: Twenty-five patients with brain metastases from lung (52%) and breast (24%) cancer, recursive partitioning analysis class 2 (96%), and an average of 11 brain metastases were enrolled. Neurocognitive function was highly impaired at presentation. Motexafin gadolinium was well tolerated. Freedom from neurologic progression was 77% at 1 year. Median survival was 5.0 months. In 29% of patients, the cause of death was brain metastasis progression. The radiologic response rate was 68%. Motexafin gadolinium's tumor selectivity was established with MRI.

Conclusion: (1) Centralized neurologic progression scoring that incorporated neurocognitive tests was implemented successfully. (2) Motexafin gadolinium was well tolerated. (3) Local control, measured by radiologic response rate, neurologic progression, and death caused by progression of brain metastasis, seemed to be improved compared with historical results. A randomized phase III trial using these methods for evaluation of efficacy has just been completed.

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2002.07.500DOI Listing

Publication Analysis

Top Keywords

motexafin gadolinium
24
neurologic progression
20
brain metastases
12
neurocognitive neurologic
12
radiologic response
12
lead-in phase
8
phase randomized
8
randomized trial
8
whole-brain radiation
8
patients brain
8

Similar Publications

Purpose: Radiation therapy (RT) plays an important role in the treatment of glioblastoma multiforme (GBM). However, inherent intrinsic resistance of tumors to radiation, coupled with the need to consider the tolerance of normal tissues and the potential effects on neurocognitive function, impose constraints on the amount of RT that can be safely delivered. A strategy for augmenting the effectiveness of RT involves the utilization of radiation sensitizers (RS).

View Article and Find Full Text PDF

Inhibition of the thioredoxin system for radiosensitization therapy of cancer.

Eur J Med Chem

March 2024

School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China. Electronic address:

Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts.

View Article and Find Full Text PDF

Myoglobin-loaded gadolinium nanotexaphyrins for oxygen synergy and imaging-guided radiosensitization therapy.

Nat Commun

October 2023

Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China.

Gadolinium (Gd)-coordinated texaphyrin (Gd-Tex) is a promising radiosensitizer that entered clinical trials, but temporarily fails largely due to insufficient radiosensitization efficacy. Little attention has been given to using nanovesicles to improve its efficacy. Herein, Gd-Tex is transformed into building blocks "Gd-Tex-lipids" to self-assemble nanovesicles called Gd-nanotexaphyrins (Gd-NTs), realizing high density packing of Gd-Tex in a single nanovesicle and achieving high Gd-Tex accumulation in tumors.

View Article and Find Full Text PDF

Development of a Three-Dimensional Multi-Modal Perfusion-Thermal Electrode System for Complete Tumor Eradication.

Cancers (Basel)

September 2022

Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA.

Background: Residual viable tumor cells after ablation at the tumor periphery serve as the source for tumor recurrence, leading to treatment failure. Purpose: To develop a novel three-dimensional (3D) multi-modal perfusion-thermal electrode system completely eradicating medium-to-large malignancies. Materials and Methods: This study included five steps: (i) design of the new system; (ii) production of the new system; (iii) ex vivo evaluation of its perfusion-thermal functions; (iv) mathematic modeling and computer simulation to confirm the optimal temperature profiles during the thermal ablation process, and; (v) in vivo technical validation using five living rabbits with orthotopic liver tumors.

View Article and Find Full Text PDF

Background: COVID-19 is a critical pandemic that has affected human communities worldwide, and there is an urgent need to develop effective drugs. Although there are a large number of candidate drug compounds that may be useful for treating COVID-19, the evaluation of these drugs is time-consuming and costly. Thus, screening to identify potentially effective drugs prior to experimental validation is necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!