Mitochondria in saponin-skinned cardiac fiber bundles were reported to have an order of magnitude lower apparent affinity to ADP than isolated mitochondria. Although ADP was measured outside the bundles, it was thought that the low affinity was not caused by diffusion gradients because of relatively short diffusion distances. Here we test the hypothesis that considerable ADP diffusion gradients exist and can be diminished by increasing the intrafiber ADP production rate. We increased the ADP-producing activity in rat heart skinned fiber bundles by incubating with 100 IU/ml yeast hexokinase and glucose. Consequently, we observed a significant decrease of the apparent Michaelis constant (K(m)) to ADP of the respiration rate of bundles from 216 +/- 59 to 50 +/- 9 microM. Fitting the results with a mathematical model, we estimated the K(m) of mitochondria in the bundles to be 25 microM. We conclude that the affinity to ADP of in situ mitochondria in heart is of the same order of magnitude as that of isolated mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00101.2002 | DOI Listing |
Nanomaterials (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.
Background: Chronic exposition to stressor factors has been postulated as a cause of structural changes in the brain in the context of dementia. One of these changes can be the fiber integrity loss, that can be measured by diffusion tensor imaging (DTI). We obtained DTI whole brain metrics to relate them with allostatic load in subjects of a chilean cohort of cognitive complaint subjects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Aging is linked to significant white matter abnormalities, which are often studied using traditional diffusion tensor imaging (DTI) metrics; however, these traditional metrics have limited sensitivity/specificity to neurobiological characteristics. Here, we use fixel-based analysis (FBA) - an approach with more precision in areas of crossing fibers - to study age-related white matter microstructural decline.
Method: This study uses cross-sectional data from the Vanderbilt Memory & Aging Project cohort [n=325, age at baseline: 72.
Alzheimers Dement
December 2024
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA.
Background: Diffusion MRI (dMRI) metrics of brain microstructure offer valuable insight into Alzheimer's disease (AD) pathology; recent reports have identified dMRI metrics that (1) tightly link with CSF or PET measures of amyloid and tau burden; and (2) mediate the relationship between CSF markers of AD and delayed logical memory performance, commonly impaired in early AD [1,2]. To better localize white matter tract disruption in AD, our BUndle ANalytic (BUAN) [3] tractometry pipeline allows principled use of statistical methods to map factors affecting microstructural metrics along the 3D length of the brain's fiber tracts. Here, we extended BUAN to pool data from multiple scanning protocols/sites - using a new harmonized tractometry approach, based on ComBat [4,5], a widely-used harmonization method modeling variations in multi-site datasets due to site- and scanner-specific effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France.
Background: Typical Alzheimer's disease (AD) and Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) are two neurodegenerative diseases that present with a similar initial amnestic clinical phenotype but have distinct proteinopathies. AD is characterised by ß-amyloid plaques and intraneuronal neurofibrillary tangles, while LATE is characterised by abnormal neuronal TDP-43 protein. With reference to the prion-like hypothesis regarding the propagation of proteinopathies, investigating white matter fibre bundle alterations could provide new insights into the propagation pathways of specific proteinopathies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!