Protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus is mediated by transport vesicles coated with the coat protein complex II (COPII). In the process of searching for novel factors that participate in the formation of COPII-coated vesicles (COPII vesicles), we isolated high-copy suppressors of a sec24-20 mutant defective in COPII vesicle formation from the ER at the restrictive temperature. Unexpectedly, one of them was identified as HAC1, a gene encoding the basic leucine-zipper type transcription factor Hac1p. Hac1p is essential for a signaling cascade activated by ER stress, termed the unfolded protein response (UPR) pathway, that leads from the ER to the nucleus. Overexpression of another UPR-related gene IRE1, which encodes an ER-resident transmembrane protein kinase/ribonuclease, also suppressed the growth defect of the sec24-20 mutant in a HAC1-dependent manner. Moreover, overexpression of IRE1 specifically suppressed growth defects of other sec mutants defective in COPII vesicle formation. These findings suggest that the activation of the UPR affects ER-to-Golgi transport via stimulation of COPII vesicle formation from the ER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(02)00923-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!