AI Article Synopsis

Article Abstract

CD26 is a type II transmembrane glycoprotein with dipeptidyl peptidase (DPPIV) activity, constitutively expressed in different cell types and contributing to T-cell activation by acting as costimulatory molecule. Although data suggest an important role for CD26 within the immune system, the physiologic function of this molecule is still unknown. To investigate the role of CD26 in vivo we have produced transgenic mice expressing the human molecule in T cells. Human CD26 (huCD26) is constitutively expressed in all thymocytes and peripheral T lymphocytes of these transgenic mice and is endowed with an enhanced DPPIV activity. CD26 transgene expression induces major phenotypic changes to T-cell populations within the thymus and in peripheral blood. After the onset of sexual maturity, huCD26 expression induces an age-related overreduction of thymus cellularity accompanied by a relative impairment of thymocyte proliferation following lectin stimulation. Also the peripheral blood T-cell pool is reduced in huCD26 transgenic mice and this is accompanied by an increase of the apoptotic rate of CD4+ and CD8+ subpopulations. Taken together these data suggest that CD26 interferes with transduction pathway(s) needed for the maturation of T cells and plays an important role in T lymphocyte homeostasis in peripheral blood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0198-8859(02)00433-0DOI Listing

Publication Analysis

Top Keywords

transgenic mice
16
peripheral blood
12
human cd26
8
t-cell populations
8
dppiv activity
8
constitutively expressed
8
role cd26
8
expression induces
8
cd26
6
cd26 expression
4

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

In this study, we revealed a critical role of eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, in regulating T cells during vaccinia virus (VACV) infection. We found that eEF-2K-deficient (eEF-2K⁻/⁻) mice exhibited a significantly higher proportion of VACV-specific effector CD8 T cells without compromising the development of VACV-specific memory CD8 T cells. RNA sequencing demonstrated that eEF-2K⁻/⁻ VACV-specific effector CD8 T cells had enhanced functionality, which improves their capacity to combat viral infection during the effector phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!