The use of delayed ion extraction in MALDI time-of-flight mass spectrometry distorts the linear relationship between m/z and the square of the ion flight time (t2) with the consequence that, if a mass accuracy of 10 ppm or better is to be obtained, the calibrant signals have to fall close to the analyte signals. If this is not possible, systematic errors arise. To eliminate these, a higher-order calibration function and thus several calibrant signals are required. For internal calibration, however, this approach is limited by signal suppression effects and the increasing chance of the calibrant signals overlapping with analyte signals. If instead the calibrants are prepared separately, this problem is replaced by an other; i.e., the ion flight times are dependent on the sample plate position. For this reason, even if the calibrants are placed close to the sample, the mass accuracy is not improved when a higher-order calibration function is applied. We have studied this phenomenon and found that the relative errors, which result when moving from one sample to the next, are directly proportional to m/z. Based on this observation, we developed a two-step calibration method, that overcomes said limitations. The first step is an external calibration with a high-order polynomial function used for the determination of the relation between m/z and t2, and the second step is a first-order internal correction for sample position-dependent errors. Applying this method, for instance, to a mass spectrum of a mixture of 18 peptides from a tryptic digest of a recombinant protein resulted in an average mass error of 1.0 ppm with a standard deviation of 3.5 ppm. When instead using a conventional two-point internal calibration, the average relative error was 2.2 ppm with a standard deviation of 15 ppm. The new method is described and its performance is demonstrated with examples relevant to proteome research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac011203o | DOI Listing |
Sci Rep
January 2025
Fischell Department of Bioengineering, University of Maryland, College Park, USA.
The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.
View Article and Find Full Text PDFMicron
January 2025
Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:
Atomic-scale metrology in scanning transmission electron microscopy (STEM) allows to measure distances between individual atomic columns in crystals and is therefore an important aspect of their structural characterization. Furthermore, it allows to locally resolve strain in crystals and to calibrate precisely the pixel size in STEM. We present a method dedicated to the evaluation of interplanar spacing (d-spacing) based on an algorithm including curve fitting of processed high-angle annular dark-field STEM (HAADF STEM) signals.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea.
Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
School of Medical Sciences, Department of Metabolism and Systems Science, WHO Collaborating Centre for Global Women's Health Research, University of Birmingham, Birmingham, UK.
Background: Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. Accurate diagnosis of PPH can prevent adverse outcomes by enabling early treatment.
Objectives: What is the accuracy of methods (index tests) for diagnosing primary PPH (blood loss ≥ 500 mL in the first 24 hours after birth) and severe primary PPH (blood loss ≥ 1000 mL in the first 24 hours after birth) (target conditions) in women giving birth vaginally (participants) compared to weighed blood loss measurement or other objective measurements of blood loss (reference standards)?
Search Methods: We searched CENTRAL, MEDLINE, Embase, Web of Science Core Collection, ClinicalTrials.
Med Sci Sports Exerc
January 2025
Energy Metabolism Section, National Institute of Diabetes, Digestive and Kidney Diseases, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health (NIH), Bethesda, MD.
Introduction: ActiGraph accelerometers are used extensively to objectively assess physical activity, sedentary behavior, and sleep. Here, we present an objective validation of five generations of ActiGraph sensors to characterize potential differences in output arising from changes to hardware or firmware.
Methods: An orbital shaker generated accelerations from 0 to 3700 milli-g in a randomized order to test the wGT3X-BT, GT9X, CentrePoint Insight Watch (CPIW) 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!