Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A 13-year-old boy with clinical and electrophysiologic findings of Friedreich's ataxia developed unusually prominent myopathy. Skeletal muscle biopsy showed mitochondrial proliferation and structural abnormalities. No mutation was found in skeletal muscle mitochondrial DNA to explain this finding. Molecular genetic and pathologic studies confirmed a diagnosis of Friedreich's ataxia in the proband and affected relatives. Although the Friedreich's ataxia phenotype results from decreased expression of a mitochondrially targeted protein, frataxin, mitochondrial myopathy has not been described as a feature of the disease. The association between the frataxin gene mutation and mitochondrial myopathy in this case suggests that severe or cumulative insults to mitochondrial function may produce myopathic changes in some cases of Friedreich's ataxia. The patient also responded clinically to carnitine supplementation, suggesting a potential palliative therapy for the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/088307380201700612 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!