Cloning of GAP Gene from K. fragilis.

Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)

State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, China.

Published: January 1998

The K. fragilis CBS 397 gene library was screened with a GAP probe, which was designed according to the homology with S. cerevisiae, K. lactis, K. marxianus GAP gene. One positive clone pG1 containing GAP1 gene was isolated and confirmed by Southern hybridization. The GAP1 gene was partially sequenced. By using a fragment of the clone as a probe, another positive clone pG2 was acquired and also confirmed by Southern hybridization. The GAP2 gene from pG2 was completely sequenced. The upstream sequences of both genes were shown to have promoter activity. The fragment of pG1 could hybridize with three chromosomes of K. fragilis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gap gene
8
positive clone
8
gap1 gene
8
confirmed southern
8
southern hybridization
8
gene
6
cloning gap
4
gene fragilis
4
fragilis fragilis
4
fragilis cbs
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell.

View Article and Find Full Text PDF

Natural infection and diversity of hemotropic mycoplasmas in free-ranging Geoffroy's cat (Leopardus geoffroyi) and margay cat (Leopardus wiedii) populations in Southern Brazil.

Vet Microbiol

January 2025

Laboratório de Protozoologia e Rickettsioses Vetoriais (ProtozooVet), Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Electronic address:

Hemoplasma infection significantly impacts felines health, yet there is a research gap regarding free-ranging wild small felids. Therefore, this study aimed to investigate the occurrence of hemoplasma in Leopardus geoffroyi and Leopardus wiedii in southern Brazil. For this purpose, we conducted molecular research for Mycoplasma spp.

View Article and Find Full Text PDF

Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.

Genome Biol Evol

January 2025

Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.

This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.

View Article and Find Full Text PDF

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!